Coverage Axis: Inner Point Selection for 3D Shape Skeletonization

In this paper, we present a simple yet effective formulation called Coverage Axis for 3D shape skeletonization. Inspired by the set cover problem, our key idea is to cover all the surface points using as few inside medial balls as possible. This formulation inherently induces a compact and expressive approximation of the Medial Axis Transform (MAT) of a given shape. Different from previous methods that rely on local approximation error, our method allows a global consideration of the overall shape structure, leading to an efficient high-level abstraction and superior robustness to noise. Another appealing aspect of our method is its capability to handle more generalized input such as point clouds and poor-quality meshes. Extensive comparisons and evaluations demonstrate the remarkable effectiveness of our method for generating compact and expressive skeletal representation to approximate the MAT. CCS Concepts • Computing methodologies → Shape analysis;

[1]  Daniel Cohen-Or,et al.  Edge-aware point set resampling , 2013, ACM Trans. Graph..

[2]  Yi-King Choi,et al.  Point2Skeleton: Learning Skeletal Representations from Point Clouds , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  J. Hartmanis Computers and Intractability: A Guide to the Theory of NP-Completeness (Michael R. Garey and David S. Johnson) , 1982 .

[4]  Daniel Cohen-Or,et al.  L1-medial skeleton of point cloud , 2013, ACM Trans. Graph..

[5]  Daniel Thalmann,et al.  Joint-dependent local deformations for hand animation and object grasping , 1989 .

[6]  Andrea Tagliasacchi,et al.  Mean Curvature Skeletons , 2012, Comput. Graph. Forum.

[7]  Tamy Boubekeur,et al.  Animated Mesh Approximation With Sphere-Meshes , 2016, ACM Trans. Graph..

[8]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[9]  F. Chazal,et al.  The λ-medial axis , 2005 .

[10]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[11]  Hugues Talbot,et al.  Robust skeletonization using the discrete λ-medial axis , 2011, Pattern Recognit. Lett..

[12]  Alec Jacobson,et al.  Fast winding numbers for soups and clouds , 2018, ACM Trans. Graph..

[13]  Yizhou Yu,et al.  Medial Meshes for Volume Approximation , 2013, ArXiv.

[14]  Xiaoguang Han,et al.  A Skeleton-Bridged Deep Learning Approach for Generating Meshes of Complex Topologies From Single RGB Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[16]  Tamy Boubekeur,et al.  Progressive medial axis filtration , 2013, SA '13.

[17]  Matthias Zwicker,et al.  Deep points consolidation , 2015, ACM Trans. Graph..

[18]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[19]  Kaleem Siddiqi,et al.  Medial Spheres for Shape Approximation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Bernd Hamann,et al.  Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration , 2009, Mathematics and Visualization.

[21]  Junjie Cao,et al.  Point Cloud Skeletons via Laplacian Based Contraction , 2010, 2010 Shape Modeling International Conference.

[22]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[23]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[24]  Romain Marie,et al.  The Delta Medial Axis: A fast and robust algorithm for filtered skeleton extraction , 2016, Pattern Recognit..

[25]  Shuangmin Chen,et al.  Skeletonization via dual of shape segmentation , 2020, Comput. Aided Geom. Des..

[26]  Vincent Sitzmann,et al.  Deep Medial Fields , 2021, ArXiv.

[27]  Riccardo Scateni,et al.  Reconstructing the Curve-Skeletons of 3D Shapes Using the Visual Hull , 2012, IEEE Transactions on Visualization and Computer Graphics.

[28]  Xiaohu Guo,et al.  DMAT: Deformable Medial Axis Transform for Animated Mesh Approximation , 2018, Comput. Graph. Forum.

[29]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[30]  W. Walthen-Dunn A Transformation for Extracting New De scriptors of Shape ' , in , 2017 .

[31]  Andrea Tagliasacchi,et al.  3D Skeletons: A State‐of‐the‐Art Report , 2016, Comput. Graph. Forum.

[32]  Daniel Cohen-Or,et al.  Parameterization-free projection for geometry reconstruction , 2007, ACM Trans. Graph..

[33]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[34]  Ariel Shamir,et al.  On‐the‐fly Curve‐skeleton Computation for 3D Shapes , 2007, Comput. Graph. Forum.

[35]  Gang Hua,et al.  Learning Dynamics via Graph Neural Networks for Human Pose Estimation and Tracking , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Evangelos Kalogerakis,et al.  Predicting Animation Skeletons for 3D Articulated Models via Volumetric Nets , 2019, 2019 International Conference on 3D Vision (3DV).

[37]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[38]  Silvia Biasotti,et al.  Graph-based representations of point clouds , 2011, Graph. Model..

[39]  Erin W. Chambers,et al.  Erosion thickness on medial axes of 3D shapes , 2016, ACM Trans. Graph..

[40]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[41]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[42]  Shiqing Xin,et al.  SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform , 2020, IEEE Transactions on Visualization and Computer Graphics.

[43]  Jovan Popovic,et al.  Automatic rigging and animation of 3D characters , 2007, ACM Trans. Graph..

[44]  Wenping Wang,et al.  P2MAT-NET: Learning medial axis transform from sparse point clouds , 2020, Comput. Aided Geom. Des..

[45]  Andrea Tagliasacchi,et al.  LSMAT Least Squares Medial Axis Transform , 2019, Comput. Graph. Forum.

[46]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[47]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[48]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[49]  Ilya Baran,et al.  Automatic rigging and animation of 3D characters , 2007, SIGGRAPH 2007.

[50]  Mark Pauly,et al.  The scale axis transform , 2009, SCG '09.

[51]  Wan-Chun Ma,et al.  Skeleton extraction of 3D objects with radial basis functions , 2003, 2003 Shape Modeling International..

[52]  Shuangmin Chen,et al.  Top-Down Shape Abstraction Based on Greedy Pole Selection , 2019, IEEE Transactions on Visualization and Computer Graphics.

[53]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[54]  Hongyuan Wang,et al.  Skeleton growing and pruning with bending potential ratio , 2011, Pattern Recognit..

[55]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..

[57]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.