Markov Chain, Monte Carlo Global Search and Integration for Bayesian, GPS, Parameter Estimation

Bayesian estimation techniques are applied to the problem of time and frequency offset estimation for Global Positioning System receivers. The estimation technique employs Markov Chain Monte Carlo (MCMC) to estimate unknown system parameters, utilizing a novel, multi-dimensional, Bayesian, global optimization strategy for initializing a Metropolis-Hastings proposal distribution. The technique enables the design of a high performance multi-user GPS receiver, capable of overcoming the near-far problem when the relative signal power is on the order of 5 dB (single antenna element) and 20 dB (4 antenna element array) and providing dramatically improved performance over conventional matched filter techniques against interference and jamming when the relative jammer and satellite signal power is on the order of 20 dB (4 antenna element array).

[1]  Mark L. Psiaki,et al.  Extended Kalman Filter Methods for Tracking Weak GPS Signals , 2002 .

[2]  G. Gerten Protecting the global positioning system , 2005, IEEE Aerospace and Electronic Systems Magazine.

[3]  Dennis M. Akos,et al.  Assessment of L5 receiver performance in presence of interference using a realistic receiver simulator , 2003 .

[4]  Ilir F. Progri GPS L5 Signal Acquisition and Tracking Under Unintentional Interference or Jamming , 2006 .

[5]  William R. Michalson,et al.  Indoor Geolocation Using FCDMA Pseudolites: Signal Structure and Performance Analysis , 2007 .

[6]  M.C. Bromberg,et al.  Accurate synchronization using a full duplex DSSS channel , 2004, PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556).

[7]  M.C. Bromberg,et al.  An Anti-Jam GPS Receiver, using Markov Chain, Monte Carlo Integration , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[8]  H. Kushner A versatile stochastic model of a function of unknown and time varying form , 1962 .

[9]  J. G. Andrews,et al.  Interference cancellation for cellular systems: a contemporary overview , 2005, IEEE Wireless Communications.

[10]  James L. Garrison,et al.  Extended Kalman Filter-Based Tracking of Weak GPS Signals under High Dynamic Conditions , 2004 .

[11]  Jean-Luc Issler,et al.  Probabilistic approach of frequency diversity as interference mitigation means , 2004 .

[12]  Francis Chan Statistical methods on detecting superpositional signals in a wireless channel , 2006 .

[13]  Rui Dinis,et al.  Frequency-Domain Multiuser Detection for CP-Assisted DS-CDMA Signals , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  John W. Betz,et al.  Multipath Performance of the New GNSS Signals , 2004 .

[16]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[17]  Ilir F. Progri,et al.  Monte Carlo Global Search for Bayesian, GPS, Parameter Estimation , 2004 .

[18]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[19]  William R. Michalson,et al.  Maximum-likelihood GPS parameter estimation , 2005 .