Bacillus subtilis DegU acts as a positive regulator for comK expression

[1]  D. Dubnau,et al.  Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis , 1996, Molecular microbiology.

[2]  J. Hoch,et al.  Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis , 1996, Journal of bacteriology.

[3]  M. Ogura,et al.  Transcription of Bacillus subtilis degR is sigma D dependent and suppressed by multicopy proB through sigma D , 1996, Journal of bacteriology.

[4]  D. Dubnau,et al.  Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis , 1995, Molecular microbiology.

[5]  D. Dubnau,et al.  The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene , 1995, Journal of bacteriology.

[6]  D. Dubnau,et al.  comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis , 1995, Molecular microbiology.

[7]  D. Sinderen,et al.  A small gene, designated comS, located within the coding region of the fourth amino acid‐activation domain of srfA, is required for competence development in Bacillus subtilis , 1995, Molecular microbiology.

[8]  D. Sinderen,et al.  Expression of the ATP‐dependent deoxyribonuclease of Bacillus subtilis is under competence‐mediated control , 1995, Molecular microbiology.

[9]  M. Nakano,et al.  Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Sinderen,et al.  comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis , 1994, Journal of bacteriology.

[11]  D. Dubnau,et al.  The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis , 1994, Journal of bacteriology.

[12]  M. Itaya,et al.  Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis , 1994, Journal of bacteriology.

[13]  J. Sekiguchi,et al.  Effect of degS-degU mutations on the expression of sigD, encoding an alternative sigma factor, and autolysin operon of Bacillus subtilis , 1994, Journal of bacteriology.

[14]  D. Dubnau,et al.  Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Rapoport,et al.  MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Chamberlin,et al.  Characterization of the sigD transcription unit of Bacillus subtilis , 1994, Journal of bacteriology.

[17]  M. Steinmetz,et al.  Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome , 1994, Journal of bacteriology.

[18]  D. Sinderen,et al.  Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis , 1994, Molecular microbiology.

[19]  P. Youngman,et al.  Regulation of bacterial differentiation , 1993 .

[20]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[21]  L. Hederstedt The Krebs Citric Acid Cycle , 1993 .

[22]  T. Tanaka,et al.  Stabilization of phosphorylated Bacillus subtilis DegU by DegR , 1992, Journal of bacteriology.

[23]  D. Dubnau,et al.  Growth medium-independent genetic competence mutants of Bacillus subtilis , 1990, Journal of bacteriology.

[24]  D. Dubnau,et al.  A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. , 1990, Genes & development.

[25]  M. Kawata,et al.  Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases , 1988, Journal of bacteriology.

[26]  Y. Nagami,et al.  Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis , 1986, Journal of bacteriology.

[27]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[28]  S. Zahler,et al.  Genetic Studies of Leucine Biosynthesis in Bacillus subtilis , 1973, Journal of bacteriology.

[29]  P. Schaeffer,et al.  Catabolic repression of bacterial sporulation. , 1965, Proceedings of the National Academy of Sciences of the United States of America.