A numerical guide to the solution of the bi-domain equations of cardiac electrophysiology.

Simulation of cardiac electrical activity using the bi-domain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bi-domain modelling. Each component of bi-domain simulations--discretization, ODE-solution, linear system solution, and parallelization--is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme.

[1]  Gernot Plank,et al.  Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations , 2009, IEEE Transactions on Biomedical Engineering.

[2]  Y Rudy,et al.  Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. , 2000, Biophysical journal.

[3]  Robert F Gilmour,et al.  Ionic mechanism of electrical alternans. , 2002, American journal of physiology. Heart and circulatory physiology.

[4]  Andrew J. Pullan,et al.  Solving the cardiac bidomain equations for discontinuous conductivities , 2006, IEEE Transactions on Biomedical Engineering.

[5]  Jonathan P. Whiteley,et al.  An Efficient Technique for the Numerical Solution of the Bidomain Equations , 2008, Annals of Biomedical Engineering.

[6]  P. Hunter,et al.  One‐Dimensional Rabbit Sinoatrial Node Models: , 2003, Journal of cardiovascular electrophysiology.

[7]  Rodrigo Weber dos Santos,et al.  On the Influence of a Volume Conductor on the Orientation of Currents in a Thin Cardiac Tissue , 2003, FIMH.

[8]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[9]  M. Courtemanche,et al.  Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. , 1998, The American journal of physiology.

[10]  Steve McKeever,et al.  On the application of partial evaluation to the optimisation of cardiac electrophysiological simulations , 2006, PEPM '06.

[11]  G. Bett,et al.  Computer model of action potential of mouse ventricular myocytes. , 2004, American journal of physiology. Heart and circulatory physiology.

[12]  James P. Keener,et al.  Mathematical physiology , 1998 .

[13]  Steve McKeever,et al.  Automatic validation and optimisation of biological models , 2009 .

[14]  Rodrigo Weber dos Santos,et al.  Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model , 2007, IEEE Transactions on Biomedical Engineering.

[15]  Luca F. Pavarino,et al.  Multilevel Additive Schwarz Preconditioners for the Bidomain Reaction-Diffusion System , 2008, SIAM J. Sci. Comput..

[16]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[17]  K. T. ten Tusscher,et al.  Alternans and spiral breakup in a human ventricular tissue model. , 2006, American journal of physiology. Heart and circulatory physiology.

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[19]  Peter Sestoft,et al.  Partial evaluation and automatic program generation , 1993, Prentice Hall international series in computer science.

[20]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[21]  A. Garny,et al.  Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[23]  Xing Cai,et al.  On the Computational Complexity of the Bidomain and the Monodomain Models of Electrophysiology , 2006, Annals of Biomedical Engineering.

[24]  J. Reddy An introduction to the finite element method , 1989 .

[25]  Michael Leuschel,et al.  Efficient and flexible access control via logic program specialisation , 2004, PEPM '04.

[26]  Jonathan P. Whiteley,et al.  Physiology Driven Adaptivity for the Numerical Solution of the Bidomain Equations , 2007, Annals of Biomedical Engineering.

[27]  Y Rudy,et al.  Mathematical model of dependence of heart rate on tissue concentration of acetylcholine. , 1989, The American journal of physiology.

[28]  G Plank,et al.  Solvers for the cardiac bidomain equations. , 2008, Progress in biophysics and molecular biology.

[29]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[30]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[31]  D. Noble,et al.  Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes. , 1998, The Canadian journal of cardiology.

[32]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[33]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[34]  Rodrigo Weber dos Santos,et al.  CellML and associated tools and techniques , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  S. Rush,et al.  A Practical Algorithm for Solving Dynamic Membrane Equations , 1978, IEEE Transactions on Biomedical Engineering.

[36]  Alexander G. Fletcher,et al.  Chaste: A test-driven approach to software development for biological modelling , 2009, Comput. Phys. Commun..

[37]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.

[38]  Pras Pathmanathan,et al.  Chaste: using agile programming techniques to develop computational biology software , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[40]  Jonathan P. Whiteley,et al.  An Efficient Numerical Technique for the Solution of the Monodomain and Bidomain Equations , 2006, IEEE Transactions on Biomedical Engineering.