Structure determination of nitrato‐κO‐bis[2‐(2‐pyridyl‐κN)amino‐5,6‐dihydro‐4H‐1,3‐thiazine‐κN]copper(II) nitrate via molecular modelling coupled with X‐ray powder diffractometry
暂无分享,去创建一个
†. J.J.Meléndez-Martínez | M. C. Garcia-Cuesta | A. M. Lozano | F. Luna-Giles | A. L. Ortiz | L. González-Méndez | F. L. Cumbrera | F. Cumbrera
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] R. Lord,et al. The Vibrational Spectra of Pyridine and Pyridine‐d5 , 1953 .
[3] G. L. Cook,et al. Correlations of the infrared spectra of some pyridines , 1957 .
[4] A. Meyers. An Infrared Examination of the C=N Link in Dihydro-1,3-oxazines and Dihydro-1,3-thiazines1 , 1961 .
[5] B. S. Ramaswamy,et al. Infrared Combination Frequencies in Coordination Complexes containing Nitrate Groups in various Coordination Environments. A Probe for the Metal–Nitrate Interaction , 1971 .
[6] D. Cremer,et al. General definition of ring puckering coordinates , 1975 .
[7] Norman L. Allinger,et al. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .
[8] A. Korolkovas,et al. Compendio esencial de química farmaceútica , 1978 .
[9] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .
[11] Joseph L. Walter,et al. The Infrared Spectra of Complex Molecules , 1982 .
[12] I. Brown,et al. A real‐space computer‐based symmetry algebra , 1987 .
[13] W. Pritzkow,et al. POSIT – a method for structure determination of small partially known molecules from powder diffraction data.Structure of 6-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione (6-methyluracil) , 1988 .
[14] Colin Eaborn,et al. Comprehensive Coordination Chemistry , 1988 .
[15] J. M. Newsam,et al. Determination of 4-connected framework crystal structures by simulated annealing , 1989, Nature.
[16] D. A. Thornton. Metal complexes of pyridine: infrared and raman spectra with particular reference to isotopic labelling studies , 1990 .
[17] S. Haddad,et al. Polymerized isomers of CuCl2(C8H12N2S2). The X-ray crystal structures of dichloro(5,5′-6,6′-tetrahydro-2,2′-bi-4H-1,3-thiazine-N3, N3′)copper(II) and di-μ-chloro-bis[chloro(5,5′-6,6′-tetrahydro-2, 2′-bi-4H-1,3-thiazine-N3,N3′)copper(II)] , 1993 .
[18] R. Bergeron,et al. The desferrithiocin pharmacophore. , 1994, Journal of medicinal chemistry.
[19] Kenneth D. M. Harris,et al. CRYSTAL STRUCTURE DETERMINATION FROM POWDER DIFFRACTION DATA BY MONTE CARLO METHODS , 1994 .
[20] G. Chiou,et al. Prevention and treatment of ocular inflammation with a new class of non-steroidal anti-inflammatory agents. , 1994, Journal of ocular pharmacology.
[21] M. Nardelli,et al. PARST95 – an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses , 1995 .
[22] P. Sohár,et al. Synthesis and pharmacological study of new 3,4-dihydro-2H,6H-pyrimido-[2,1-b][1,3]thiazines , 1996 .
[23] K. Harris,et al. The application of a genetic algorithm for solving crystal structures from powder diffraction data , 1997 .
[24] Roy L. Johnston,et al. The genetic algorithm : Foundations and applications in structure solution from powder diffraction data , 1998 .
[25] Louis J. Farrugia,et al. WinGX suite for small-molecule single-crystal crystallography , 1999 .
[26] D. Kyriakidis,et al. Antiproliferative activity of mixed-ligand dien-Cu(II) complexes with thiazole, thiazoline and imidazole derivatives. , 2002, Journal of inorganic biochemistry.
[27] E. Yeşilada,et al. Synthesis of some 1,2,4-triazolo[3,2-b]-1,3-thiazine-7-ones with potential analgesic and antiinflammatory activities. , 2002, Farmaco.
[28] V. Favre-Nicolin,et al. FOX, `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction , 2002 .
[29] W. Xu,et al. Ab initio structure determination of rofecoxib from powder diffraction data using molecular packing analysis method and direct space method. , 2003, International journal of pharmaceutics.
[30] Bernard Viossat,et al. Low-temperature (180 K) crystal structure, electron paramagnetic resonance spectroscopy, and propitious anticonvulsant activities of CuII2(aspirinate)4(DMF)2 and other CuII2(aspirinate)4 chelates. , 2003, Journal of inorganic biochemistry.
[31] R. Peschar,et al. A Monte Carlo approach to crystal structure determination from powder diffraction data , 2003 .
[32] C. Giacovazzo,et al. Solution of organic crystal structures from powder diffraction by combining simulated annealing and direct methods , 2003 .
[33] F. Sánchez-Bajo,et al. Ab initio structural determination of 2-(2-pyridyl)imino-N-(2-thiazolin-2-yl)thiazolidine from powder diffraction data , 2004 .
[34] A. Dzyabchenko,et al. Ab initio structure determination of m-toluidine by powder X-ray diffraction , 2004 .
[35] Thomas J. Meyer,et al. Comprehensive Coordination Chemistry II , 2004 .
[36] F. Luna-Giles,et al. Synthesis and physic-chemical properties of a copper(II) complex with 2-(2-pyridyl)iminotetrahydro-1,3-thiazine hydrochloride-water (1/2) (PyTzHCl.2H2O). Crystal structure of PyTz and [[CuCl(PyTz)]2(mu-Cl)2]. , 2004, Journal of inorganic biochemistry.