Super Liouville conformal blocks from $ \mathcal{N} = 2 $ SU(2) quiver gauge theories

[1]  A. Belavin,et al.  AGT conjecture and integrable structure of conformal field theory for c=1 , 2011, 1102.0343.

[2]  Vasyl Alba,et al.  On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture , 2010, 1012.1312.

[3]  M. Taki On AGT conjecture for pure super Yang-Mills and W-algebra , 2009, 0912.4789.

[4]  B. Feigin,et al.  Equivariant K-theory of Hilbert schemes via shuffle algebra , 2009, 0904.1679.

[5]  L. Alday,et al.  Affine SL(2) Conformal Blocks from 4d Gauge Theories , 2010, Letters in Mathematical Physics.

[6]  A. Mironov,et al.  On AGT relation in the case of U(3) , 2009, 0908.2569.

[7]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[8]  A. Mironov,et al.  On non-conformal limit of the AGT relations , 2009, 0909.2052.

[9]  D. Gaiotto Asymptotically free = 2 theories and irregular conformal blocks , 2009, 0908.0307.

[10]  N. Wyllard A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories , 2009, 0907.2189.

[11]  L. Hadasz,et al.  Elliptic recurrence representation of the N=1 Neveu–Schwarz blocks , 2007, 0711.1619.

[12]  V. Belavin On the N=1 super Liouville four-point functions , 2007, 0705.1983.

[13]  V. Belavin,et al.  Bootstrap in Supersymmetric Liouville Field Theory , 2008 .

[14]  A. Neveu,et al.  Bootstrap in supersymmetric Liouville field theory. I. NS sector , 2007 .

[15]  K. Nagao K-THEORY OF QUIVER VARIETIES, q-FOCK SPACE AND NONSYMMETRIC MACDONALD POLYNOMIALS , 2007, 0709.1767.

[16]  V. Belavin N=1 supersymmetric conformal block recursion relations , 2006, hep-th/0611295.

[17]  L. Hadasz,et al.  Recursion representation of the Neveu-Schwarz superconformal block , 2006, hep-th/0611266.

[18]  A. Zamolodchikov,et al.  Higher equations of motion in the N = 1 SUSY Liouville field theory , 2006 .

[19]  A. Buras,et al.  Charm-Quark Contribution to K L → μ + μ − at Next-to-Next-to-Leading Order , 2006 .

[20]  Kota Yoshioka,et al.  Instanton counting on blowup. I. 4-dimensional pure gauge theory , 2003, math/0306198.

[21]  Kota Yoshioka,et al.  Instanton counting on blowup, I , 2003 .

[22]  R. Flume,et al.  AN ALGORITHM FOR THE MICROSCOPIC EVALUATION OF THE COEFFICIENTS OF THE SEIBERG–WITTEN PREPOTENTIAL , 2002, hep-th/0208176.

[23]  N. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002, hep-th/0306211.

[24]  V. Khoze,et al.  The Calculus of many instantons , 2002, hep-th/0206063.

[25]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[26]  H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .

[27]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[28]  G. Lusztig Quivers, perverse sheaves, and quantized enveloping algebras , 1991 .

[29]  J. Bismut Localization formulas, superconnections, and the index theorem for families , 1986 .

[30]  A. Polyakov Quantum Geometry of Fermionic Strings , 1981 .

[31]  B. Kostant On Whittaker vectors and representation theory , 1978 .

[32]  V. Drinfeld,et al.  A description of instantons , 1978 .

[33]  M. Atiyah,et al.  Construction of Instantons , 1978 .

[34]  V. Zakharov,et al.  Yang-Mills equations as inverse scattering problem , 1978 .

[35]  R. S. Ward,et al.  Instantons and algebraic geometry , 1977 .

[36]  A. Polyakov,et al.  Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .