Local nuclear energy density functional at next-to-next-to-next-to-leading order

We construct nuclear energy density functionals in terms of derivatives of densities up to sixth, next-to-next-to-next-to-leading order (N{sup 3}LO). A phenomenological functional built in this way conforms to the ideas of the density matrix expansion and is rooted in the expansions characteristic to effective theories. It builds on the standard functionals related to the contact and Skyrme forces, which constitute the zero-order (LO) and second-order (NLO) expansions, respectively. At N{sup 3}LO, the full functional with density-independent coupling constants, and with the isospin degree of freedom taken into account, contains 376 terms, whereas the functionals restricted by Galilean and gauge symmetries contain 100 and 42 terms, respectively. For functionals additionally restricted by the spherical, space-inversion, and time-reversal symmetries, the corresponding numbers of terms are equal to 100, 60, and 22, respectively.

[1]  Form of the effective interaction in harmonic-oscillator-based effective theory , 2008, 0710.0289.

[2]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[3]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[4]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[5]  John W. Negele,et al.  The Structure of Finite Nuclei in the Local Density Approximation. , 1969 .

[6]  I. Ragnarsson,et al.  Shapes and shells in nuclear structure , 1995 .

[7]  Hartree-Fock calculations in the density matrix expansion approach , 1997, nucl-th/9705049.

[8]  J. Dobaczewski,et al.  Local density approximation for proton-neutron pairing correlations: Formalism , 2004 .

[9]  J. Dobaczewski,et al.  Erratum: Time-odd components in the mean field of rotating superdeformed nuclei [Phys. Rev. C 52, 1827 (1995)] , 1997 .

[10]  Compressibility, effective mass and density dependence in skyrme forces , 2003, nucl-th/0309012.

[11]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[12]  M. Stoitsov,et al.  Nuclear density functional theory , 1991, Physics Subject Headings (PhySH).

[13]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[14]  T. Skyrme CVII. The nuclear surface , 1956 .

[15]  Reductionism, emergence, and effective field theories , 2001, physics/0101039.

[16]  D. Brink,et al.  Time-dependent hartree-fock theory with Skyrme's interaction , 1975 .

[17]  Dobaczewski,et al.  Time-odd components in the mean field of rotating superdeformed nuclei. , 1995, Physical review. C, Nuclear physics.

[18]  T. Skyrme The effective nuclear potential , 1958 .

[19]  Nuclear energy density functional from chiral pion nucleon dynamics , 2002, nucl-th/0212049.

[20]  W. Nazarewicz,et al.  Microscopic aspects of nuclear deformation , 1994 .

[21]  W. Nazarewicz,et al.  Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional , 2001, nucl-th/0112056.

[22]  J. Applequist,et al.  Traceless cartesian tensor forms for spherical harmonic functions: new theorems and applications to electrostatics of dielectric media , 1989 .

[23]  P. Quentin,et al.  Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description , 1975 .

[24]  D. R. Entem,et al.  Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory , 2003 .

[25]  D. Vretenar,et al.  Relativistic nuclear energy density functional constrained by low-energy QCD , 2005, nucl-th/0509040.

[26]  M. Kortelainen,et al.  Dependence of single-particle energies on coupling constants of the nuclear energy density functional , 2008, 0803.2291.

[27]  A unitary correlation operator method , 1997, nucl-th/9709038.

[28]  X. Campi,et al.  A simple approximation for the nuclear density matrix , 1978 .

[29]  J. Bell,et al.  CVIII. The nuclear spin-orbit coupling , 1956 .

[30]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[31]  Sergey N. Maximoff,et al.  Exchange energy functionals based on the full fourth-order density matrix expansion , 2001 .

[32]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[33]  John W. Negele,et al.  Density-matrix expansion for an effective nuclear Hamiltonian , 1972 .

[34]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .

[35]  A. Bhattacharyya,et al.  Density functional theory for a confined Fermi system with short-range interaction , 2002, nucl-th/0212071.