The RNAi revolution

The term RNAi — short for RNA interference — crops up again and again in biology research these days. This is in part because of its power as a laboratory tool, and in part because it is a widespread natural phenomenon.

[1]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[2]  Marjori Matzke,et al.  Genetic analysis of RNA-mediated transcriptional gene silencing. , 2004, Biochimica et biophysica acta.

[3]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[4]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[5]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[6]  R. Allshire,et al.  Hairpin RNAs and Retrotransposon LTRs Effect RNAi and Chromatin-Based Gene Silencing , 2003, Science.

[7]  R. Plasterk,et al.  mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RNaseD , 1999, Cell.

[8]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[9]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[10]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[11]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[12]  E. Lander,et al.  Remodeling of yeast genome expression in response to environmental changes. , 2001, Molecular biology of the cell.

[13]  Songtao Jia,et al.  RNAi-Mediated Targeting of Heterochromatin by the RITS Complex , 2004, Science.

[14]  Kazunari Taira,et al.  A Small Modulatory dsRNA Specifies the Fate of Adult Neural Stem Cells , 2004, Cell.

[15]  J. Mol,et al.  Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. , 1990, The Plant cell.

[16]  Adam M. Gustafson,et al.  Genetic and Functional Diversification of Small RNA Pathways in Plants , 2004, PLoS biology.

[17]  R. Lehmann,et al.  Targeted mRNA degradation by double-stranded RNA in vitro. , 1999, Genes & development.

[18]  C. Napoli,et al.  Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. , 1990, The Plant cell.

[19]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[20]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[21]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[22]  T. Fujisawa,et al.  Analysis of a piwi-Related Gene Implicates Small RNAs in Genome Rearrangement in Tetrahymena , 2002, Cell.

[23]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[24]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[25]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[26]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[27]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[28]  H. L. Sänger,et al.  RNA-directed de novo methylation of genomic sequences in plants , 1994, Cell.

[29]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[30]  James A. Birchler,et al.  Heterochromatic Silencing and HP1 Localization in Drosophila Are Dependent on the RNAi Machinery , 2004, Science.

[31]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.