A hydrodynamic approach to Stark localization

When a free Fermi gas on a lattice is subject to the action of a linear potential it does not drift away, as one would naively expect, but it remains spatially localized. Here we revisit this phenomenon, known as Stark localization, within the recently proposed framework of generalized hydrodynamics. In particular, we consider the dynamics of an initial state in the form of a domain wall and we recover known results for the particle density and the particle current, while we derive analytical predictions for relevant observables such as the entanglement entropy and the full counting statistics. Then, we extend the analysis to generic potentials, highlighting the relationship between the occurrence of localization and the presence of peculiar closed orbits in phase space, arising from the lattice dispersion relation. We also compare our analytical predictions with numerical calculations and with the available results, finding perfect agreement. This approach paves the way for an exact treatment of the interacting case known as Stark many-body localization.

[1]  S. Scopa,et al.  Scaling of fronts and entanglement spreading during a domain wall melting , 2023, The European Physical Journal Special Topics.

[2]  P. Calabrese,et al.  Transport and entanglement across integrable impurities from Generalized Hydrodynamics , 2023, 2303.01779.

[3]  P. Calabrese,et al.  Full counting statistics and symmetry resolved entanglement for free conformal theories with interface defects , 2023, 2302.08209.

[4]  P. Calabrese,et al.  Domain wall melting across a defect , 2022, Europhysics Letters.

[5]  A. Scardicchio,et al.  Interface dynamics in the two-dimensional quantum Ising model , 2022, Physical Review B.

[6]  S. Scopa,et al.  Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench , 2022, Journal of Statistical Mechanics: Theory and Experiment.

[7]  F. Essler A short introduction to Generalized Hydrodynamics , 2022, Physica A: Statistical Mechanics and its Applications.

[8]  F. Ares,et al.  Entanglement dynamics of a hard-core quantum gas during a Joule expansion , 2022, Journal of Physics A: Mathematical and Theoretical.

[9]  A. Scardicchio,et al.  Localization and Melting of Interfaces in the Two-Dimensional Quantum Ising Model. , 2022, Physical review letters.

[10]  P. Calabrese,et al.  Exact hydrodynamic solution of a double domain wall melting in the spin-1/2 XXZ model , 2021, SciPost Physics.

[11]  J. Dubail,et al.  Generalized hydrodynamics in the one-dimensional Bose gas: theory and experiments , 2021, 2108.02509.

[12]  C. Monroe,et al.  Observation of Stark many-body localization without disorder , 2021, Nature.

[13]  B. Doyon,et al.  Quantum generalized hydrodynamics of the Tonks–Girardeau gas: density fluctuations and entanglement entropy , 2021, Journal of Physics A: Mathematical and Theoretical.

[14]  B. Doyon,et al.  Diffusive hydrodynamics of inhomogenous Hamiltonians , 2021, Journal of Physics A: Mathematical and Theoretical.

[15]  P. Calabrese,et al.  Exact entanglement growth of a one-dimensional hard-core quantum gas during a free expansion , 2021, 2105.05054.

[16]  V. Alba,et al.  Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[17]  Alvise Bastianello,et al.  Hydrodynamics of weak integrability breaking , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[18]  S. Gopalakrishnan,et al.  Hydrodynamic nonlinear response of interacting integrable systems , 2021, Proceedings of the National Academy of Sciences.

[19]  S. Gopalakrishnan,et al.  Superdiffusion in spin chains , 2021, 2103.01976.

[20]  I. Gornyi,et al.  Stark many-body localization: Evidence for Hilbert-space shattering , 2020, 2012.13722.

[21]  D. Weiss,et al.  Generalized hydrodynamics in strongly interacting 1D Bose gases , 2020, Science.

[22]  H. Fan,et al.  Observation of Bloch oscillations and Wannier-Stark localization on a superconducting quantum processor , 2020, 2007.08853.

[23]  B. Doyon,et al.  The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas , 2020, SciPost Physics.

[24]  A. Luca,et al.  Generalised hydrodynamics with dephasing noise , 2020, 2003.01702.

[25]  P. Calabrese,et al.  Domain wall melting in the spin- 12 XXZ spin chain: Emergent Luttinger liquid with a fractal quasiparticle charge , 2020, Physical Review B.

[26]  A. Gambassi,et al.  Quasilocalized dynamics from confinement of quantum excitations , 2019, 1911.07877.

[27]  M. Fagotti Locally quasi-stationary states in noninteracting spin chains , 2019, SciPost Physics.

[28]  B. Doyon,et al.  Quantum Generalized Hydrodynamics. , 2019, Physical review letters.

[29]  B. Pozsgay,et al.  Current Operators in Bethe Ansatz and Generalized Hydrodynamics: An Exact Quantum-Classical Correspondence , 2019, Physical Review X.

[30]  B. Doyon Lecture notes on Generalised Hydrodynamics , 2019, 1912.08496.

[31]  J. D. Nardis,et al.  Diffusion from convection , 2019, 1911.01995.

[32]  S. Gopalakrishnan,et al.  Generalized hydrodynamics, quasiparticle diffusion, and anomalous local relaxation in random integrable spin chains , 2019, Physical Review B.

[33]  D. Bernard,et al.  Diffusion in generalized hydrodynamics and quasiparticle scattering , 2018, SciPost Physics.

[34]  A. Gambassi,et al.  Quasilocalized excitations induced by long-range interactions in translationally invariant quantum spin chains , 2018, Physical Review B.

[35]  B. Doyon,et al.  Generalized Hydrodynamics on an Atom Chip. , 2018, Physical review letters.

[36]  C. Hooley,et al.  Stark Many-Body Localization. , 2018, Physical review letters.

[37]  G. Refael,et al.  From Bloch oscillations to many-body localization in clean interacting systems , 2018, Proceedings of the National Academy of Sciences.

[38]  A. Gambassi,et al.  Suppression of transport in nondisordered quantum spin chains due to confined excitations , 2018, Physical Review B.

[39]  T. Prosen,et al.  Non-equilibrium quantum transport in presence of a defect: the non-interacting case , 2018, SciPost Physics.

[40]  D. Bernard,et al.  Hydrodynamic Diffusion in Integrable Systems. , 2018, Physical review letters.

[41]  G. Mandal,et al.  Quantum quench and thermalization of one-dimensional Fermi gas via phase-space hydrodynamics , 2018, Physical Review A.

[42]  Auditya Sharma,et al.  Characteristic length scales from entanglement dynamics in electric-field-driven tight-binding chains , 2018, Physical Review B.

[43]  P. Calabrese,et al.  Entanglement evolution and generalised hydrodynamics: noninteracting systems , 2018, Journal of Physics A: Mathematical and Theoretical.

[44]  V. Eisler,et al.  Hydrodynamical phase transition for domain-wall melting in the XY chain , 2018, Physical review B.

[45]  P. Calabrese,et al.  Universal Broadening of the Light Cone in Low-Temperature Transport. , 2017, Physical review letters.

[46]  Jacopo Viti,et al.  Analytic solution of the domain-wall nonequilibrium stationary state , 2017, 1707.06218.

[47]  Alvise Bastianello,et al.  Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold. , 2017, Physical review letters.

[48]  M. Fagotti Higher-order generalized hydrodynamics in one dimension: The noninteracting test , 2017 .

[49]  L. Piroli,et al.  Low-temperature transport in out-of-equilibrium XXZ chains , 2017, 1711.00519.

[50]  V. Eisler,et al.  Front dynamics and entanglement in the XXZ chain with a gradient , 2017, 1708.05187.

[51]  P. Calabrese,et al.  Quench action and Renyi entropies in integrable systems , 2017, 1705.10765.

[52]  C. Karrasch,et al.  Solvable Hydrodynamics of Quantum Integrable Systems. , 2017, Physical review letters.

[53]  B. Doyon,et al.  A note on generalized hydrodynamics: inhomogeneous fields and other concepts , 2016, 1611.08225.

[54]  P. Calabrese,et al.  Conformal Field Theory for Inhomogeneous One-dimensional Quantum Systems: the Example of Non-Interacting Fermi Gases , 2016, 1606.04401.

[55]  M. Collura,et al.  Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents. , 2016, Physical review letters.

[56]  B. Doyon,et al.  Emergent hydrodynamics in integrable quantum systems out of equilibrium , 2016, 1605.07331.

[57]  M. Rigol,et al.  Generalized Gibbs ensemble in integrable lattice models , 2016, 1604.03990.

[58]  F. Essler,et al.  Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.

[59]  N. Allegra,et al.  Inhomogeneous field theory inside the arctic circle , 2015, 1512.02872.

[60]  P. Calabrese,et al.  Validity of the GGE for quantum quenches from interacting to noninteracting models , 2014, 1403.7431.

[61]  P. Calabrese,et al.  Quench dynamics of a Tonks–Girardeau gas released from a harmonic trap , 2013, 1306.5604.

[62]  P. Calabrese,et al.  Equilibration of a Tonks-Girardeau gas following a trap release. , 2013, Physical review letters.

[63]  M. Collura,et al.  Hydrodynamic description of hard-core bosons on a Galileo ramp , 2013, 1302.5083.

[64]  P. Calabrese,et al.  Exact relations between particle fluctuations and entanglement in Fermi gases , 2011, 1111.4836.

[65]  I. Peschel Special Review: Entanglement in Solvable Many-Particle Models , 2012, Brazilian Journal of Physics.

[66]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[67]  K. E. CAHnL Density Operators and Quasiprobability Distributions * , 2011 .

[68]  P. Calabrese,et al.  Universal corrections to scaling for block entanglement in spin-1/2 XX chains , 2010, 1006.3420.

[69]  I. Peschel,et al.  Reduced density matrices and entanglement entropy in free lattice models , 2009, 0906.1663.

[70]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[71]  F. Iglói,et al.  Entanglement in spin chains with gradients , 2008, 0810.3788.

[72]  I. Klich,et al.  Quantum noise as an entanglement meter. , 2008, Physical review letters.

[73]  P. Krapivsky,et al.  Logarithmic current fluctuations in nonequilibrium quantum spin chains. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  J. Cardy,et al.  Form Factors of Branch-Point Twist Fields in Quantum Integrable Models and Entanglement Entropy , 2007, 0706.3384.

[75]  M. Rigol,et al.  Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. , 2006, Physical review letters.

[76]  T. Platini,et al.  Relaxation in the XX quantum chain , 2006, cond-mat/0611673.

[77]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[78]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[79]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[80]  I. Peschel On the reduced density matrix for a chain of free electrons , 2004, cond-mat/0403048.

[81]  F. Keck,et al.  Dynamics of Bloch oscillations , 2004 .

[82]  I. Peschel LETTER TO THE EDITOR: Calculation of reduced density matrices from correlation functions , 2002, cond-mat/0212631.

[83]  H. Korsch,et al.  Wannier–Stark resonances in optical and semiconductor superlattices , 2001, quant-ph/0111132.

[84]  M. Chung,et al.  Density-Matrix Spectra of Solvable Fermionic Systems , 2001, cond-mat/0103301.

[85]  G. Schütz,et al.  Transport in the XX chain at zero temperature: emergence of flat magnetization profiles. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  I. Peschel,et al.  Density‐matrix spectra for integrable models , 1998, cond-mat/9810174.

[87]  R. Bishop,et al.  Quantum many-particle systems , 1990 .

[88]  C. Yang,et al.  Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction , 1969 .

[89]  Gregory H. Wannier,et al.  Dynamics of Band Electrons in Electric and Magnetic Fields , 1962 .

[90]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[91]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .