One-step Fabrication of a New Carbon Paste Electrode for Dopamine, Ascorbic acid and Uric acid determination in Serum

[1]  M. Behbahani,et al.  Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products. , 2015, Food chemistry.

[2]  M. Behbahani,et al.  Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. , 2015, Materials science & engineering. C, Materials for biological applications.

[3]  M. Behbahani,et al.  A palladium imprinted polymer for highly selective and sensitive electrochemical determination of ultra-trace of palladium ions , 2014 .

[4]  Hanif Kazerooni,et al.  Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide. , 2014, Biosensors & bioelectronics.

[5]  Ping Yang,et al.  Direct electrodeposition of reduced graphene oxide on carbon fiber electrode for simultaneous determination of ascorbic acid, dopamine and uric acid , 2014 .

[6]  M. Behbahani,et al.  Synthesis, characterization and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes , 2014 .

[7]  T. E. M. Nancy,et al.  Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid , 2014 .

[8]  Marcelo F de Oliveira,et al.  Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode. , 2014, Food chemistry.

[9]  M. Khosravi,et al.  Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose. , 2014, Materials science & engineering. C, Materials for biological applications.

[10]  M. Behbahani,et al.  Thiol-functionalized fructose-derived nanoporous carbon as a support for gold nanoparticles and its application for aerobic oxidation of alcohols in water , 2014 .

[11]  A. Galal,et al.  Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid , 2014 .

[12]  N. Ataollahi,et al.  Sodium dodecyl sulfate modified carbon nanotubes paste electrode as a novel sensor for the simultaneous determination of dopamine, ascorbic acid, and uric acid , 2014 .

[13]  A. Mostafavi,et al.  Voltammetric behavior of uric acid on carbon paste electrode modified with salmon sperm dsDNA and its application as label-free electrochemical sensor. , 2014, Biosensors & bioelectronics.

[14]  A. Afkhami,et al.  Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples. , 2014, Materials science & engineering. C, Materials for biological applications.

[15]  A. Abbaci,et al.  A new copper doped montmorillonite modified carbon paste electrode for propineb detection , 2014 .

[16]  Fengchun Yang,et al.  An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. , 2013, Biosensors & bioelectronics.

[17]  Xinxia Cai,et al.  An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. , 2012, Biosensors & bioelectronics.

[18]  A. Galal,et al.  Probing cysteine self-assembled monolayers over gold nanoparticles--towards selective electrochemical sensors. , 2012, Talanta.

[19]  A. Galal,et al.  Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate , 2012 .

[20]  A. Galal,et al.  Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. , 2011, Bioelectrochemistry.

[21]  Shereen M. Azab,et al.  Carbon Paste Gold Nanoparticles Sensor for the Selective Determination of Dopamine in Buffered Solutions , 2010 .

[22]  Emad A. Khudaish,et al.  Electrochemical oxidation of dopamine and ascorbic acid at a palladium electrode modified with in situ fabricated iodine-adlayer in alkaline solution. , 2010, Talanta.

[23]  Shen-Ming Chen,et al.  Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. , 2009, Bioelectrochemistry.

[24]  S. Harish,et al.  PEDOT/Palladium composite material: synthesis, characterization and application to simultaneous determination of dopamine and uric acid , 2008 .

[25]  Philip N. Bartlett,et al.  Polyaniline-based microelectrodes for sensing ascorbic acid in beverages , 2008 .

[26]  A. Gopalan,et al.  Electro-assisted fabrication of layer-by-layer assembled poly(2,5-dimethoxyaniline)/phosphotungstic acid modified electrode and electrocatalytic oxidation of ascorbic acid , 2008 .

[27]  Shen-ming Chen,et al.  Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. , 2007, Talanta.

[28]  Wei Chen,et al.  Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (p-nitrobenzenazo resorcinol) modified glassy carbon electrode , 2007 .

[29]  Yan Wang,et al.  A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid. , 2007, Analytica chimica acta.

[30]  F. Tajabadi,et al.  Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. , 2006, Analytical biochemistry.

[31]  S. Ivanov,et al.  Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid , 2006 .

[32]  Yang Liu,et al.  An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties , 2005 .

[33]  A. G. Frenich,et al.  Determination of ascorbic acid and carotenoids in food commodities by liquid chromatography with mass spectrometry detection. , 2005, Journal of agricultural and food chemistry.

[34]  Chung-Yu Wu,et al.  Detection of serum uric acid using the optical polymeric enzyme biochip system. , 2004, Biosensors & bioelectronics.

[35]  Jyh-Myng Zen and,et al.  A Selective Voltammetric Method for Uric Acid and Dopamine Detection Using Clay-Modified Electrodes , 1997 .

[36]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[37]  R. Wightman,et al.  Detection of dopamine dynamics in the brain. , 1988, Analytical chemistry.

[38]  J. Savéant,et al.  Catalysis of electrochemical reactions at redox polymer coated electrodes: mediation of the Fe(III)/Fe(II) oxido-reduction by a polyvinylpyridine polymer containing coordinatively attached bisbipyridine chlororuthenium redox centers , 1986 .

[39]  A. Tuantranont,et al.  Cytotoxicity assessment of MDA-MB-231 breast cancer cells on screen-printed graphene-carbon paste substrate. , 2014, Colloids and surfaces. B, Biointerfaces.

[40]  Jean-Michel Kauffmann,et al.  Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990–1993 , 1995 .

[41]  Lo Gorton,et al.  Carbon paste electrodes modified with enzymes, tissues, and cells , 1995 .