Amplification of distant estrogen response elements deregulates target genes associated with tamoxifen resistance in breast cancer.

[1]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[2]  Lincoln D. Stein,et al.  Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes , 2012, Nature.

[3]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[4]  Peter A. Jones,et al.  Cancer genetics and epigenetics: two sides of the same coin? , 2012, Cancer cell.

[5]  Gyan Bhanot,et al.  Amplified Loci on Chromosomes 8 and 17 Predict Early Relapse in ER-Positive Breast Cancers , 2012, PloS one.

[6]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[7]  S. De,et al.  DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes , 2011, Nature Biotechnology.

[8]  Joshua M. Stuart,et al.  Subtype and pathway specific responses to anticancer compounds in breast cancer , 2011, Proceedings of the National Academy of Sciences.

[9]  L. Esserman,et al.  A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. , 2011, JAMA.

[10]  H. Döhner,et al.  DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. , 2011, Blood.

[11]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[12]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[13]  S. De,et al.  DNA secondary structures and epigenetic determinants of cancer genome evolution , 2010, Nature Structural &Molecular Biology.

[14]  N. D. Clarke,et al.  Integrative model of genomic factors for determining binding site selection by estrogen receptor-α , 2010, Molecular systems biology.

[15]  Peter Regitnig,et al.  Genomic index of sensitivity to endocrine therapy for breast cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Jose Russo,et al.  Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. , 2010, Genome research.

[17]  Lorenzo Ferraro,et al.  Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. , 2010, The American journal of pathology.

[18]  M. Stratton,et al.  A census of amplified and overexpressed human cancer genes , 2010, Nature Reviews Cancer.

[19]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[20]  S. Varambally,et al.  Induced Chromosomal Proximity and Gene Fusions in Prostate Cancer , 2009, Science.

[21]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[22]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[23]  A. Visel,et al.  Genomic Views of Distant-Acting Enhancers , 2009, Nature.

[24]  Sandya Liyanarachchi,et al.  Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. , 2009, Cancer research.

[25]  H. Stunnenberg,et al.  ChIP‐Seq of ERα and RNA polymerase II defines genes differentially responding to ligands , 2009, The EMBO journal.

[26]  Christopher A. Miller,et al.  A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. , 2009, Genome research.

[27]  Xiang-Dong Fu,et al.  Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules , 2008, Proceedings of the National Academy of Sciences.

[28]  D. Taatjes,et al.  The Human CDK8 Subcomplex Is a Histone Kinase That Requires Med12 for Activity and Can Function Independently of Mediator , 2008, Molecular and Cellular Biology.

[29]  Zoltan Dezso,et al.  Genome-wide functional synergy between amplified and mutated genes in human breast cancer. , 2008, Cancer research.

[30]  Jennifer A. Mitchell,et al.  Transcription factories are nuclear subcompartments that remain in the absence of transcription. , 2008, Genes & development.

[31]  Cameron S. Osborne,et al.  Myc Dynamically and Preferentially Relocates to a Transcription Factory Occupied by Igh , 2007, PLoS biology.

[32]  Wouter de Laat,et al.  Quantitative analysis of chromosome conformation capture assays (3C-qPCR) , 2007, Nature Protocols.

[33]  Melvin E Andersen,et al.  Non-monotonic dose-response relationship in steroid hormone receptor-mediated gene expression. , 2007, Journal of molecular endocrinology.

[34]  E. Appella,et al.  Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. , 2006, Cancer cell.

[35]  Laura N. Vandenberg,et al.  The mammary gland response to estradiol: Monotonic at the cellular level, non-monotonic at the tissue-level of organization? , 2006, The Journal of Steroid Biochemistry and Molecular Biology.

[36]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[37]  D. Albertson,et al.  Gene amplification in cancer. , 2006, Trends in genetics : TIG.

[38]  Daniel Birnbaum,et al.  Prognosis and Gene Expression Profiling of 20q13-Amplified Breast Cancers , 2006, Clinical Cancer Research.

[39]  D. Kranz,et al.  Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. , 2006, Endocrinology.

[40]  Wonshik Han,et al.  Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer , 2006, BMC Cancer.

[41]  Pawel Stankiewicz,et al.  Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes , 2005, PLoS genetics.

[42]  B. Gastman,et al.  Disruption of Mcl-1·Bim Complex in Granzyme B-mediated Mitochondrial Apoptosis* , 2005, Journal of Biological Chemistry.

[43]  Anne Bergmann,et al.  Lineage-specific imprinting and evolution of the zinc-finger gene ZIM2. , 2004, Genomics.

[44]  Fergus J. Couch,et al.  The 17q23 Amplicon and Breast Cancer , 2003, Breast Cancer Research and Treatment.

[45]  S. Mandlekar,et al.  Mechanisms of tamoxifen-induced apoptosis , 2001, Apoptosis.

[46]  G. Dontu,et al.  In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. , 2003, Genes & development.

[47]  Christian A. Rees,et al.  Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  H. Leffers,et al.  Dual effects of phytoestrogens result in u-shaped dose-response curves. , 2002, Environmental health perspectives.

[49]  Anne Kallioniemi,et al.  High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays. , 2002, The American journal of pathology.

[50]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[51]  J W Gray,et al.  Comprehensive genome sequence analysis of a breast cancer amplicon. , 2001, Genome research.

[52]  Michael L. Bittner,et al.  Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Schwab Oncogene amplification in solid tumors. , 1999, Seminars in cancer biology.

[54]  W. McGuire,et al.  Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. , 1987, Science.

[55]  J. Trent,et al.  Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour , 1983, Nature.