1.3-μm InGaAs MQW Metamorphic Laser Diode Fabricated With Lattice Relaxation Control Based on In Situ Curvature Measurement

We demonstrate a lattice relaxation control by in situ curvature measurement for a metamorphic buffer. Using this relaxation control, we investigated a thin (240 nm) In<sub>0.15</sub>Ga<sub>0.85</sub> As metamorphic buffer for fabricating an unstrained In<sub>0.10</sub>Ga<sub>0.90</sub>As quasi-substrate on a GaAs substrate and succeeded in fabricating a 1.3-μm metamorphic InGaAs multiplequantum well laser diode (LD) on the metamorphic buffer. We confirmed that the LD was directly modulated at 25 Gb/s with a high-characteristic temperature (T<sub>0</sub> = 187 K).

[1]  W. Kobayashi,et al.  1.3-μm Range Metamorphic InGaAs Laser With High Characteristic Temperature for Low Power Consumption Operation , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[3]  W. Kobayashi,et al.  10-Gb/s Direct Modulation up to 100 $^{\circ}$C Using 1.3- $\mu$m-Range Metamorphically Grown Strain Compensated InGaAs–GaAs MQW Laser on GaAs Substrate , 2009, IEEE Photonics Technology Letters.

[4]  Kaoru Inoue,et al.  Lattice-Mismatched Growth and Transport Properties of InAlAs/InGaAs Heterostructures on GaAs Substrates , 1989 .

[5]  Hiroshi Yamaguchi,et al.  Atomic-scale imaging of strain relaxation via misfit dislocations in highly mismatched semiconductor heteroepitaxy: InAs/GaAs(111)A , 1997 .

[6]  A. Larsson,et al.  Metamorphic growth of 1.25–1.29 μm InGaAs quantum well lasers on GaAs by molecular beam epitaxy , 2007 .

[7]  I. J. Fritz,et al.  Electrical and optical studies of dislocation filtering in InGaAs/GaAs strained-layer superlattices , 1988 .

[8]  F. Romanato,et al.  Strain induced effects on the transport properties of metamorphic InAlAs/InGaAs quantum wells , 2005 .

[9]  Y. Nakano,et al.  Strain-compensation measurement and simulation of InGaAs/GaAsP multiple quantum wells by metal organic vapor phase epitaxy using wafer-curvature , 2011 .

[10]  H. Ishikawa,et al.  Fabrication of In/sub 0.25/Ga/sub 0.75/As/InGaAsP strained SQW lasers on In/sub 0.05/Ga/sub 0.95/As ternary substrate , 1994, IEEE Photonics Technology Letters.

[11]  Rajaram Bhat,et al.  High-Performance Uncooled 1.3-pm AlxGayIn 1 - Ix: - As/InP Strained-Layer Quantum-Well Lasers for Subscriber Loop Applications , 1994 .

[12]  T. Kamijoh,et al.  1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer , 1998, IEEE Photonics Technology Letters.

[13]  S. Yoda,et al.  High-Characteristic-Temperature 1.3-$\mu$m-Band Laser on an InGaAs Ternary Substrate Grown by the Traveling Liquidus-Zone Method , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Z. Wang,et al.  Influence of Radiative Energy Transfer on the Thermal Behavior of Bonded InGaAs/GaAs Lasers , 2009, IEEE Transactions on Advanced Packaging.

[15]  A. Larsson,et al.  Effects of Lateral Diffusion on the Temperature Sensitivity of the Threshold Current for 1.3-$\mu{\hbox {m}}$ Double Quantum-Well GaInNAs–GaAs Lasers , 2008, IEEE Journal of Quantum Electronics.

[16]  S. Denbaars,et al.  Effects of an InGaP electron barrier layer on 1.55 /spl mu/m laser diode performance , 1998, Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129).

[17]  H. Ishikawa,et al.  Long-wavelength strained quantum-well lasers oscillating up to 210/spl deg/C on InGaAs ternary substrates , 1998, IEEE Photonics Technology Letters.

[18]  W. Kobayashi,et al.  High temperature operation of 1.26 μm ridge waveguide laser with InGaAs metamorphic buffer on GaAs substrate , 2008, 2008 IEEE 21st International Semiconductor Laser Conference.

[19]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[20]  A. P. Vasil’ev,et al.  Metamorphic lasers for 1.3-µm spectral range grown on GaAs substrates by MBE , 2003 .

[21]  Han Qin,et al.  Metamorphic InGaAs Quantum Well Laser Diodes at 1.5μm on GaAs Grown by Molecular Beam Epitaxy , 2009 .

[22]  M. Kubota,et al.  1.3-μm AlGaInAs buried-heterostructure lasers , 1999, IEEE Photonics Technology Letters.

[23]  T. Kurosaki,et al.  50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  H. Soda,et al.  A1.3 μm strained quantum well laser on a graded InGaAs buffer with a GaAs substrate , 1996 .

[25]  Olivier J. F. Martin,et al.  Papers Thermal Behavior of Visible AlGaInP-GaInP Ridge Laser Diodes , 1992 .

[26]  M. Aoki,et al.  Low-threshold and high-temperature characteristics of 1.3-/spl mu/m InGaAlAs MQW lasers grown by metalorganic vapor-phase epitaxy , 2000, Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107).

[27]  Effects of thermal cycle annealing on reduction of defect density in lattice-mismatched InGaAs solar cells , 2006 .

[28]  W. Kobayashi,et al.  High-Temperature Operation of 1.26-$\mu$m Ridge Waveguide Laser With InGaAs Metamorphic Buffer on GaAs Substrate , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Hiroshi Yasaka,et al.  Enhanced Temperature Characteristics of InGaAs/InAlGaAs Multi-Quantum-Well Lasers on Low-In-Content InGaAs Ternary Substrates , 2008 .