DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury

[1]  Chunhai Fan,et al.  DNA Nanotechnology-Enabled Drug Delivery Systems. , 2018, Chemical reviews.

[2]  Baoquan Ding,et al.  A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo , 2018, Nature Biotechnology.

[3]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[4]  Hao Yan,et al.  Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. , 2017, Nature chemistry.

[5]  R. Jin,et al.  Glomerular Barrier Behaves As an Atomically Precise Bandpass Filter in a Sub-nanometer Regime , 2017, Nature nanotechnology.

[6]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[7]  T. Park,et al.  Diverse Applications of Nanomedicine , 2017, ACS nano.

[8]  Cheng Hu,et al.  Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[9]  Vasilis Ntziachristos,et al.  DNA‐Nanostructure–Gold‐Nanorod Hybrids for Enhanced In Vivo Optoacoustic Imaging and Photothermal Therapy , 2016, Advanced materials.

[10]  O. Farokhzad,et al.  Nanomedicines for renal disease: current status and future applications , 2016, Nature Reviews Nephrology.

[11]  Weibo Cai,et al.  DNA nanomaterials for preclinical imaging and drug delivery. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[12]  R. Hicks,et al.  Gallium-68 EDTA PET/CT for Renal Imaging. , 2016, Seminars in nuclear medicine.

[13]  Peng Yin,et al.  Genetic encoding of DNA nanostructures and their self-assembly in living bacteria , 2016, Nature Communications.

[14]  J. Chao,et al.  Hetero-assembly of gold nanoparticles on a DNA origami template , 2016, Science China Chemistry.

[15]  D. Scheinberg,et al.  Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury , 2016, Science Translational Medicine.

[16]  Shery Jacob,et al.  A simple practice guide for dose conversion between animals and human , 2016, Journal of basic and clinical pharmacy.

[17]  Jiye Shi,et al.  Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. , 2016, ACS applied materials & interfaces.

[18]  Yusuke Suzuki,et al.  Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice , 2016, Nature Medicine.

[19]  Haotian Sun,et al.  A porphyrin-PEG polymer with rapid renal clearance. , 2016, Biomaterials.

[20]  Jaehong Key,et al.  Soft Discoidal Polymeric Nanoconstructs Resist Macrophage Uptake and Enhance Vascular Targeting in Tumors. , 2015, ACS nano.

[21]  Ravikumar Arvapalli,et al.  Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague–Dawley rats , 2015, Journal of Nanobiotechnology.

[22]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[23]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[24]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[25]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[26]  M. Eblan,et al.  Clinical Translation of Nanomedicine. , 2015, Chemical reviews.

[27]  D. Heller,et al.  Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. , 2015, Nano letters.

[28]  David Binns,et al.  68Ga-EDTA PET/CT Imaging and Plasma Clearance for Glomerular Filtration Rate Quantification: Comparison to Conventional 51Cr-EDTA , 2015, The Journal of Nuclear Medicine.

[29]  Jiye Shi,et al.  Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. , 2015, Angewandte Chemie.

[30]  P. Marik Acute Kidney Injury , 2015 .

[31]  S. Siva,et al.  68 Ga-EDTA PET / CT Imaging and Plasma Clearance for Glomerular Filtration Rate Quantification : Comparison to Conventional 51 Cr-EDTA , 2015 .

[32]  Zhen Gu,et al.  Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery , 2014, Journal of the American Chemical Society.

[33]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[34]  P. Kimmel,et al.  Acute kidney injury and chronic kidney disease as interconnected syndromes. , 2014, The New England journal of medicine.

[35]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[36]  K. Gothelf,et al.  Singlet oxygen in DNA nanotechnology. , 2014, Accounts of chemical research.

[37]  Jorge Cerdá,et al.  Raising Awareness of Acute Kidney Injury: A Global Perspective of a Silent Killer , 2013, Kidney international.

[38]  Weihong Tan,et al.  Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics , 2013, Proceedings of the National Academy of Sciences.

[39]  Kira S. Makarova,et al.  Comparative genomics of defense systems in archaea and bacteria , 2013, Nucleic acids research.

[40]  Jean Cadet,et al.  DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. , 2013, Cold Spring Harbor perspectives in biology.

[41]  John A Kellum,et al.  Acute kidney injury , 2012, The Lancet.

[42]  Warren C W Chan,et al.  The effect of nanoparticle size, shape, and surface chemistry on biological systems. , 2012, Annual review of biomedical engineering.

[43]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[44]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[45]  A. Singh,et al.  Animal models of acute renal failure , 2012, Pharmacological reports : PR.

[46]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[47]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[48]  Yi Guo,et al.  Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. , 2011, Journal of the American Chemical Society.

[49]  Mark E. Davis,et al.  Targeting kidney mesangium by nanoparticles of defined size , 2011, Proceedings of the National Academy of Sciences.

[50]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[51]  Magnus Bergkvist,et al.  Paradoxical glomerular filtration of carbon nanotubes , 2010, Proceedings of the National Academy of Sciences.

[52]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[53]  Clare K. Carney,et al.  Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure , 2010, Proceedings of the National Academy of Sciences.

[54]  M. Rosner,et al.  Acute kidney injury. , 2009, Current drug targets.

[55]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[56]  Neha Agnihotri,et al.  Mechanism of scavenging action of N-acetylcysteine for the OH radical: a quantum computational study. , 2009, The journal of physical chemistry. B.

[57]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[58]  P. Peduzzi,et al.  Intensity of renal support in critically ill patients with acute kidney injury. , 2008, The New England journal of medicine.

[59]  Ande Bao,et al.  Dynamic Imaging of Functionalized Multi‐Walled Carbon Nanotube Systemic Circulation and Urinary Excretion , 2008 .

[60]  S. Fishbane N-acetylcysteine in the prevention of contrast-induced nephropathy. , 2008, Clinical journal of the American Society of Nephrology : CJASN.

[61]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[62]  D. Leibfritz,et al.  Free radicals and antioxidants in normal physiological functions and human disease. , 2007, The international journal of biochemistry & cell biology.

[63]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.

[64]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[65]  John A Kellum,et al.  Acute renal failure in critically ill patients: a multinational, multicenter study. , 2005, JAMA.

[66]  K. Shyu,et al.  Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure. , 2002, Journal of the American College of Cardiology.

[67]  Y. Sugiyama,et al.  Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[68]  K. Nath,et al.  Reactive oxygen species and acute renal failure. , 2000, The American journal of medicine.

[69]  W Zidek,et al.  Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. , 2000, The New England journal of medicine.

[70]  T. Hemnani,et al.  Reactive oxygen species and oxidative DNA damage. , 1998, Indian journal of physiology and pharmacology.