Fully dynamic randomized algorithms for graph spanners

Spanner of an undirected graph <i>G</i> = (<i>V,E</i>) is a subgraph that is sparse and yet preserves all-pairs distances approximately. More formally, a spanner with <i>stretch</i> <i>t</i> ∈ ℕ is a subgraph (<i>V,E<sub>S</sub></i>), <i>E<sub>S</sub></i> ⊆ <i>E</i> such that the distance between any two vertices in the subgraph is at most <i>t</i> times their distance in <i>G</i>. Though <i>G</i> is trivially a <i>t</i>-spanner of itself, the research as well as applications of spanners invariably deal with a <i>t</i>-spanner that has as small number of edges as possible. We present fully dynamic algorithms for maintaining spanners in centralized as well as synchronized distributed environments. These algorithms are designed for undirected unweighted graphs and use randomization in a crucial manner. Our algorithms significantly improve the existing fully dynamic algorithms for graph spanners. The expected size (number of edges) of a <i>t</i>-spanner maintained at each stage by our algorithms matches, up to a polylogarithmic factor, the worst case optimal size of a <i>t</i>-spanner. The expected amortized time (or messages communicated in distributed environment) to process a single insertion/deletion of an edge by our algorithms is <i>close</i> to optimal.

[1]  Aravind Srinivasan,et al.  Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons , 2003, J. Comput. Syst. Sci..

[2]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[3]  Bilel Derbel,et al.  On the locality of distributed sparse spanner construction , 2008, PODC '08.

[4]  Michael Elkin,et al.  A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners , 2006, PODC '07.

[5]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[6]  Michael Elkin,et al.  Sparse source-wise and pair-wise distance preservers , 2005, SODA '05.

[7]  Mikkel Thorup,et al.  Spanners and emulators with sublinear distance errors , 2006, SODA '06.

[8]  Edith Cohen Fast algorithms for constructing t-spanners and paths with stretch t , 1993, FOCS.

[9]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[10]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[11]  Michael Elkin,et al.  Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners , 2007, TALG.

[12]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[13]  Telikepalli Kavitha,et al.  Faster Algorithms for All-pairs Approximate Shortest Paths in Undirected Graphs , 2010, SIAM J. Comput..

[14]  J C HENRY,et al.  New construction. , 1962, Hospital progress.

[15]  Lenore Cowen,et al.  Compact roundtrip routing in directed networks , 2004, J. Algorithms.

[16]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[17]  David Peleg,et al.  (1+epsilon, beta)-Spanner Constructions for General Graphs , 2004, SIAM J. Comput..

[18]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[19]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[20]  Kurt Mehlhorn,et al.  New constructions of (α, β)-spanners and purely additive spanners , 2005, SODA '05.

[21]  Uri Zwick,et al.  Dynamic Approximate All-Pairs Shortest Paths in Undirected Graphs , 2004, FOCS.

[22]  Béla Bollobás,et al.  Sparse distance preservers and additive spanners , 2003, SODA '03.

[23]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[24]  Telikepalli Kavitha,et al.  Faster Algorithms for Approximate Distance Oracles and All-Pairs Small Stretch Paths , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[25]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[26]  Michael Elkin A near-optimal fully dynamic distributed algorithm for maintaining sparse spanners , 2006, ArXiv.

[27]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2004, JACM.

[28]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[29]  Lenore Cowen,et al.  Compact routing with minimum stretch , 1999, SODA '99.

[30]  Alejandro A. Schäffer,et al.  Graph spanners , 1989, J. Graph Theory.

[31]  Uri Zwick,et al.  Improved Dynamic Reachability Algorithms for Directed Graphs , 2008, SIAM J. Comput..

[32]  Mikkel Thorup,et al.  Roundtrip spanners and roundtrip routing in directed graphs , 2002, SODA '02.

[33]  Uri Zwick,et al.  On Dynamic Shortest Paths Problems , 2004, Algorithmica.

[34]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[35]  Surender Baswana,et al.  Streaming algorithm for graph spanners - single pass and constant processing time per edge , 2008, Inf. Process. Lett..

[36]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[37]  Joan Feigenbaum,et al.  Graph Distances in the Data-Stream Model , 2008, SIAM J. Comput..

[38]  Sandeep Sen,et al.  A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs , 2007, Random Struct. Algorithms.

[39]  Shimon Even,et al.  An On-Line Edge-Deletion Problem , 1981, JACM.

[40]  Jon M. Kleinberg,et al.  Metric embeddings with relaxed guarantees , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[41]  Aaron Bernstein,et al.  Fully Dynamic (2 + epsilon) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[42]  Joan Feigenbaum,et al.  Graph distances in the streaming model: the value of space , 2005, SODA '05.

[43]  Mikkel Thorup,et al.  Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles , 2004, SWAT.

[44]  Sandeep Sen,et al.  A Simple Linear Time Algorithm for Computing Sparse Spanners in Weighted Graphs , 2003 .

[45]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[46]  David P. Woodruff Additive Spanners in Nearly Quadratic Time , 2010, ICALP.

[47]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[48]  Seth Pettie Distributed algorithms for ultrasparse spanners and linear size skeletons , 2008, PODC '08.

[49]  Michael Elkin,et al.  Computing almost shortest paths , 2001, TALG.

[50]  Kurt Mehlhorn,et al.  Additive spanners and (α, β)-spanners , 2010, TALG.

[51]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[52]  Mikkel Thorup,et al.  Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.