Fractional-order PIλDμ controller design

This paper introduces a new design method of fractional-order proportional-derivative (FOPD) and fractional-order proportional-integral-derivative (FOPID) controllers. A biquadratic approximation of a fractional-order differential operator is used to introduce a new structure of finite-order FOPID controllers. Using the new FOPD controllers, the controlled systems can achieve the desired phase margins without migrating the gain crossover frequency of the uncontrolled system. This may not be guaranteed when using FOPID controllers. The proposed FOPID controller has a smaller number of parameters to tune than its existing counterparts. A systematic design procedure is identified in terms of the desired phase and the gain margins of the controlled systems. The viability of the design methods is verified using a simple numerical example.

[1]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[2]  N. Sadati,et al.  An Optimal Fractional Order Controller for an AVR System Using Particle Swarm Optimization Algorithm , 2007, 2007 Large Engineering Systems Conference on Power Engineering.

[3]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[4]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[5]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[6]  Dumitru Baleanu,et al.  Existence and Uniqueness of Solution for a Class of Nonlinear Fractional Order Differential Equations , 2012 .

[7]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[8]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Brent Maundy,et al.  Second order approximation of the fractional laplacian operator for equal-ripple response , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[10]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.

[11]  Reyad El-Khazali,et al.  Sliding Mode Control of Generalized fractional Chaotic Systems , 2006, Int. J. Bifurc. Chaos.

[12]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[13]  Duarte Valério,et al.  NINTEGER: A NON-INTEGER CONTROL TOOLBOX FOR MATLAB , 2004 .

[14]  Amit Konar,et al.  Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique , 2008, ArXiv.

[15]  Yangquan Chen,et al.  Fractional Calculus and Biomimetic Control , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[16]  Igor Podlubny,et al.  On Fractional Derivatives, Fractional-Orlder Dynamic Systems and PIXD~-controllei~s , 1997 .

[17]  I. Podlubny Fractional differential equations , 1998 .

[18]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[19]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[20]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[21]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[22]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[23]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[24]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  Ajith Abraham,et al.  Design of fractional order PIλDμ controllers with an improved differential evolution , 2008, GECCO '08.

[27]  B. T. Krishna,et al.  Active and Passive Realization of Fractance Device of Order 1/2 , 2008 .