Evolutionary trajectories and KRAS gene dosage define pancreatic cancer phenotypes

Sebastian Mueller*, Thomas Engleitner*, Roman Maresch*, Magdalena Zukowska, Sebastian Lange, Thorsten Kaltenbacher, Björn Konukiewitz, Rupert Öllinger, Maximilian Zwiebel, Alex Strong, Hsi-Yu Yen, Ruby Banerjee, Sandra Louzada, Beiyuan Fu, Barbara Seidler, Juliana Götzfried, Kathleen Schuck, Zonera Hassan, Andreas Arbeiter, Nina Schönhuber, Sabine Klein, Christian Veltkamp, Mathias Friedrich, Lena Rad, Maxim Barenboim, Christoph Ziegenhain, Julia Hess, Oliver M. Dovey, Stefan Eser, Swati Parekh, Fernando Constantino-Casas, Jorge de la Rosa, Marta I. Sierra, Mario Fraga, Julia Mayerle, Günter Klöppel, Juan Cadiñanos, Pentao Liu, George Vassiliou, Wilko Weichert, Katja Steiger, Wolfgang Enard, Roland M. Schmid, Fengtang Yang, Kristian Unger, Günter Schneider, Ignacio Varela, Allan Bradley, Dieter Saur, Roland Rad

[1]  Mathias J Friedrich,et al.  Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice , 2017, Nature Protocols.

[2]  Gun Ho Jang,et al.  A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns , 2016, Nature.

[3]  Christian Veltkamp,et al.  Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice , 2016, Nature Communications.

[4]  R. Gibbs,et al.  Genomic analyses identify molecular subtypes of pancreatic cancer , 2016, Nature.

[5]  Christoph Ziegenhain,et al.  The impact of amplification on differential expression analyses by RNA-seq , 2016, Scientific Reports.

[6]  Mathias J Friedrich,et al.  CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice , 2015, Proceedings of the National Academy of Sciences.

[7]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[8]  Michael A. Choti,et al.  Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets , 2015, Nature Communications.

[9]  J. Kench,et al.  Whole genomes redefine the mutational landscape of pancreatic cancer , 2015, Nature.

[10]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[11]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[12]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[13]  Christian Veltkamp,et al.  A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer , 2014, Nature Medicine.

[14]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[15]  Benjamin D. Smith,et al.  Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. , 2014, Cancer research.

[16]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[17]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[18]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[19]  Lincoln D. Stein,et al.  Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes , 2012, Nature.

[20]  R. Schmid,et al.  Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. , 2012, The Journal of clinical investigation.

[21]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[22]  G. Kristiansen,et al.  The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma , 2012, Nature.

[23]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[24]  E. Moding,et al.  Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice , 2011, Disease Models & Mechanisms.

[25]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[26]  P. Spellman,et al.  Subtypes of Pancreatic Ductal Adenocarcinoma and Their Differing Responses to Therapy , 2011, Nature Medicine.

[27]  Jason I. Herschkowitz,et al.  The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo , 2011, Proceedings of the National Academy of Sciences.

[28]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[29]  Youngho Seo,et al.  Selective activation of p53-mediated tumour suppression in high-grade tumours , 2010, Nature.

[30]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[31]  M. Nowak,et al.  Distant Metastasis Occurs Late during the Genetic Evolution of Pancreatic Cancer , 2010, Nature.

[32]  Francisco J. Sánchez-Rivera,et al.  Stage-specific sensitivity to p53 restoration during lung cancer progression , 2010, Nature.

[33]  M. Moore,et al.  Advanced pancreatic carcinoma: current treatment and future challenges , 2010, Nature Reviews Clinical Oncology.

[34]  Alison P. Klein,et al.  DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  R. Kutner,et al.  Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors , 2009, Nature Protocols.

[36]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[37]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[38]  Pan Du,et al.  lumi: a pipeline for processing Illumina microarray , 2008, Bioinform..

[39]  S. Baylin,et al.  Absence of E-Cadherin Expression Distinguishes Noncohesive from Cohesive Pancreatic Cancer , 2008, Clinical Cancer Research.

[40]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[41]  Lewis A. Chodosh,et al.  Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis , 2007, Nature Cell Biology.

[42]  D. Saur,et al.  IKKα controls p52/RelB at the skp2 gene promoter to regulate G1‐ to S‐phase progression , 2006, The EMBO journal.

[43]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  N. Carter,et al.  Karyotyping mouse chromosomes by multiplex-FISH (M-FISH) , 2004, Chromosome Research.

[45]  E. Petricoin,et al.  Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. , 2003, Cancer cell.

[46]  M. Höglund,et al.  Detailed genomic mapping and expression analyses of 12p amplifications in pancreatic carcinomas reveal a 3.5‐Mb target region for amplification , 2002, Genes, chromosomes & cancer.

[47]  H. Moses,et al.  Conditional inactivation of the TGF-beta type II receptor using Cre:Lox. , 2002, Genesis.

[48]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[49]  A. Berns,et al.  Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer , 2001, Nature Genetics.

[50]  G. Klöppel,et al.  Exocrine pancreatic tumours and their histological classification. A study based on 167 autopsy and 97 surgical cases , 1983, Histopathology.