Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus

The possible coexistence of calbindin D28k with parvalbumin and of calbindin D28k with cholecystokinin was studied in nonpyramidal cells of the rat dorsal hippocampal formation. Neighbouring Vibratome sections were immunostained either for calbindin D28k and parvalbumin or for calbindin D28k and cholecystokinin. The cells, halved during sectioning, were identified in both sections immunostained for different antigens. The coexistence of calbindin D28k and parvalbumin in the same neuron was rare throughout the hippocampal formation with the exception of stratum oriens of the CA1 region, where 9.6% of the parvalbumin‐immunoreactive cells also contained calbindin D28k. In stratum radiatum of the CA3 region, calbindin D28k and cholecystokinin coexisted in 12.5% and 21.2% of the calbindin D28k and cholecystokinin‐immunoreactive cells, respectively. In other regions of the hippocampal formation, the two markers coexisted in less than 5% of the cells of either type. The present results demonstrate that calbindin D28k‐, parvalbumin‐ and cholecystokinin‐containing nonpyramidal cells represent largely nonoverlapping cell populations and may thus be involved in different inhibitory circuits.

[1]  J. N. Hayward,et al.  Cholecystokinin in hippocampal pathways , 1981, The Journal of comparative neurology.

[2]  A. Cowey,et al.  Combined golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey , 1981, The Journal of comparative neurology.

[3]  G. Buzsáki,et al.  Direct afferent excitation and long-term potentiation of hippocampal interneurons. , 1982, Journal of neurophysiology.

[4]  J. Miller,et al.  Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat , 1982, Brain Research.

[5]  R. Nicoll,et al.  Feed‐forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[6]  R. Nicoll,et al.  Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[7]  J. Miller,et al.  Calcium-binding protein distribution in the rat brain , 1982, Brain Research.

[8]  P. Somogyi,et al.  Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  R. Nicoll,et al.  Comparison of the action of baclofen with gamma‐aminobutyric acid on rat hippocampal pyramidal cells in vitro. , 1985, The Journal of physiology.

[10]  P. Somogyi,et al.  Cholecystokinin‐immunoreactive cells form symmetrical synaptic contacts with pyramidal and nonpyramidal neurons in the hippocampus , 1985, The Journal of comparative neurology.

[11]  T. Kosaka,et al.  GABAergic neurons containing CCK‐8‐like and/or VIP‐like immunoreactivities in the rat hippocampus and dentate gyrus , 1985, The Journal of comparative neurology.

[12]  K. Harris,et al.  Ultrastructural study of cholecystokinin‐immunoreactive cells and processes in area CA1 of the rat hippocampus , 1985, The Journal of comparative neurology.

[13]  S. Hendry,et al.  Morphology of synapses formed by cholecystokinin-immunoreactive axon terminals in regio superior of rat hippocampus , 1985, Neuroscience.

[14]  P. Somogyi,et al.  Synaptic connections, axonal and dendritic patterns of neurons immunoreactive for cholecystokinin in the visual cortex of the cat , 1986, Neuroscience.

[15]  M. Davies,et al.  gamma‐Aminobutyric acid hyperpolarizes rat hippocampal pyramidal cells through a calcium‐dependent potassium conductance. , 1986, The Journal of physiology.

[16]  M. Celio,et al.  Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. , 1986, Science.

[17]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[18]  R. S. Sloviter,et al.  Immunocytochemical localization of GABA‐, cholecystokinin‐, vasoactive intestinal polypeptide‐, and somatostatin‐like immunoreactivity in the area dentata and hippocampus of the rat , 1987, The Journal of comparative neurology.

[19]  Yasuo Kawaguchi,et al.  Fast-spiking non-pyramidal cells in the hippocampal CA3 region, dentate gyrus and subiculum of rats , 1987, Brain Research.

[20]  T. Kosaka,et al.  An aspect of the organizational principle of the γ-aminobutyric acidergic system in the cerebral cortex , 1987, Brain Research.

[21]  M. Segal Repetitive inhibitory postsynaptic potentials evoked by 4-aminopyridine in hippocampal neurons in vitro , 1987, Brain Research.

[22]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[25]  K. Baimbridge,et al.  Distribution and co-localization of calbindin D28k with VIP and neuropeptide Y but not somatostatin, galanin and substance P in the enteric nervous system of the rat , 1988, Peptides.

[26]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[27]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[28]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Orban,et al.  Calbindin D-28K and parvalbumin immunoreactivity is confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus , 1989, Neuroscience Letters.

[30]  M. Segal A subset of local interneurons generate slow inhibitory postsynaptic potentials in hippocampal neurons , 1990, Brain Research.

[31]  M. Frotscher,et al.  Afferent and efferent synaptic conncetions sof somatostatin‐immunoreactive neurons in the rat fascia dentata , 1990, The Journal of comparative neurology.

[32]  J. Lacaille,et al.  Membrane properties of interneurons in stratum oriens-alveus of the CA1 region of rat hippocampus in vitro , 1990, Neuroscience.

[33]  M. Segal,et al.  Serotonin attenuates a slow inhibitory postsynaptic potential in rat hippocampal neurons , 1990, Neuroscience.

[34]  W. Müller,et al.  Inhibitory role of dentate hilus neurons in guinea pig hippocampal slice. , 1990, Journal of neurophysiology.

[35]  M. Frotscher,et al.  Axo‐axonic chandelier cells in the rat fascia dentata: Golgi‐electron microscopy and immunocytochemical studies , 1990, The Journal of comparative neurology.

[36]  T. Freund,et al.  Innervation of different peptide-containing neurons in the hippocampus by gabaergic septal afferents , 1990, Neuroscience.

[37]  L. Acsády,et al.  Serotonergic control of the hippocampus via local inhibitory interneurons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.