An evolutionary learning based fuzzy theoretic approach for salient object detection

Human attention tends to get focused on the most prominent components of a scene which are in sharp contrast with the background. These are termed as salient regions. The human brain perceives an object to be salient based on various features like the relative intensity, spread of the region, color contrast with the background, size and position within an image. Since these features vary widely, no crisp thresholds can be specified for an automatic salient region detector. In this paper we present a rule based system which uses a set of fuzzy features to mark out the salient region in an image. A genetic algorithm based evolutionary system is used to learn the rules from the training images. Extensive comparisons with the state-of-the-art methods in terms of precision, recall and F-measure are made on two different publicly available datasets to prove the effectiveness of this approach. The application of the proposed salient object detection approach is shown in non-photorealistic rendering, perception based image compression and context aware retargeting applications with promising results.

[1]  Yu Fu,et al.  Visual saliency detection by spatially weighted dissimilarity , 2011, CVPR 2011.

[2]  Ingvar Claesson,et al.  Face Detection using Local SMQT Features and Split up Snow Classifier , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[3]  Kanad K. Biswas,et al.  Salient object detection using a fuzzy theoretic approach , 2012, ICVGIP '12.

[4]  Huchuan Lu,et al.  Bayesian Saliency via Low and mid Level Cues , 2022 .

[5]  Esa Rahtu,et al.  Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation , 2011, SCIA.

[6]  Nong Sang,et al.  Variable resolution image compression based on a model of visual attention , 2009, International Symposium on Multispectral Image Processing and Pattern Recognition.

[7]  Esa Rahtu,et al.  Segmenting Salient Objects from Images and Videos , 2010, ECCV.

[8]  Kanad K. Biswas,et al.  A case-based reasoning approach for detection of salient regions in images , 2010, ICVGIP '10.

[9]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[10]  Alexander C. Berg,et al.  Finding iconic images , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[11]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[12]  Shi-Min Hu,et al.  SalientShape: group saliency in image collections , 2013, The Visual Computer.

[13]  Moncef Gabbouj,et al.  Automatic Object Segmentation by Quantum Cuts , 2014, 2014 22nd International Conference on Pattern Recognition.

[14]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[15]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[16]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[17]  Jian Sun,et al.  Geodesic Saliency Using Background Priors , 2012, ECCV.

[18]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[19]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Garrison W. Cottrell,et al.  Robust classification of objects, faces, and flowers using natural image statistics , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Xing Xie,et al.  A visual attention model for adapting images on small displays , 2003, Multimedia Systems.

[22]  Aykut Erdem,et al.  Visual saliency estimation by nonlinearly integrating features using region covariances. , 2013, Journal of vision.

[23]  A. Mizuno,et al.  A change of the leading player in flow Visualization technique , 2006, J. Vis..

[24]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[25]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[26]  Stella X. Yu,et al.  Image Compression Based on Visual Saliency at Individual Scales , 2009, ISVC.

[27]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[28]  Xiangjian He,et al.  Bayesian salient object detection based on saliency driven clustering , 2014, Signal Process. Image Commun..

[29]  Stan Sclaroff,et al.  Saliency Detection: A Boolean Map Approach , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[31]  Jie Yang,et al.  Salient Object Detection via Color Contrast and Color Distribution , 2012, ACCV.

[32]  B. Wandell Foundations of vision , 1995 .

[33]  Haibin Ling,et al.  Saliency Detection on Light Field , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Douglas DeCarlo,et al.  Stylization and abstraction of photographs , 2002, ACM Trans. Graph..

[35]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Shang-Hong Lai,et al.  Fusing generic objectness and visual saliency for salient object detection , 2011, 2011 International Conference on Computer Vision.

[37]  Narendra Ahuja,et al.  A SNoW-Based Face Detector , 1999, NIPS.

[38]  Min Xu,et al.  Saliency detection with color contrast based on boundary information and neighbors , 2014, The Visual Computer.

[39]  Barbara Anne Dosher,et al.  Task precision at transfer determines specificity of perceptual learning. , 2009, Journal of vision.

[40]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[42]  Sabine Süsstrunk,et al.  Saliency detection for content-aware image resizing , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[43]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Sabine Süsstrunk,et al.  Saliency detection using maximum symmetric surround , 2010, 2010 IEEE International Conference on Image Processing.

[45]  Mei Rong Perception-based Multi-quality Image Compression for Efficient Transmission , 2006, 2006 International Symposium on Intelligent Signal Processing and Communications.

[46]  Lihi Zelnik-Manor,et al.  Saliency for image manipulation , 2013, The Visual Computer.

[47]  Vicente Ordonez,et al.  High level describable attributes for predicting aesthetics and interestingness , 2011, CVPR 2011.

[48]  Neil D. B. Bruce Features that draw visual attention: an information theoretic perspective , 2005, Neurocomputing.

[49]  Dattaguru V Kamat A framework for visual saliency detection with applications to image thumbnailing , 2009 .

[50]  Huchuan Lu,et al.  Saliency Detection via Dense and Sparse Reconstruction , 2013, 2013 IEEE International Conference on Computer Vision.

[51]  Tao Xiang,et al.  Looking Beyond the Image: Unsupervised Learning for Object Saliency and Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Andrew B. Watson,et al.  Image Compression Using the Discrete Cosine Transform , 1994 .

[53]  Huchuan Lu,et al.  Graph-Regularized Saliency Detection With Convex-Hull-Based Center Prior , 2013, IEEE Signal Processing Letters.

[54]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Huchuan Lu,et al.  Saliency Detection via Absorbing Markov Chain , 2013, 2013 IEEE International Conference on Computer Vision.

[56]  Lihi Zelnik-Manor,et al.  Context-aware saliency detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Jian Sun,et al.  Salient object detection by composition , 2011, 2011 International Conference on Computer Vision.

[58]  Christof Koch,et al.  Image Signature: Highlighting Sparse Salient Regions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[61]  Nanning Zheng,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[62]  Hans-Jürgen Zimmermann,et al.  Fuzzy set theory , 1992 .

[63]  Lihi Zelnik-Manor,et al.  What Makes a Patch Distinct? , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[65]  Nanning Zheng,et al.  Automatic salient object segmentation based on context and shape prior , 2011, BMVC.

[66]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[67]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[68]  Vibhav Vineet,et al.  Efficient Salient Region Detection with Soft Image Abstraction , 2013, 2013 IEEE International Conference on Computer Vision.