A direct translaminar inhibitory circuit tunes cortical output

Anatomical and physiological experiments have outlined a blueprint for the feedforward flow of activity in cortical circuits: signals are thought to propagate primarily from the middle cortical layer (layer 4, L4) up to L2/3 and down to the major cortical output layer (L5). Pharmacological manipulations, however, have contested this model and have suggested that L4 may not be critical for sensory responses of neurons in either superficial or deep layers. To address these conflicting models, we reversibly manipulated L4 activity in awake, behaving mice using cell type–specific optogenetics. In contrast with both prevailing models, we found that activity in L4 directly suppressed L5, in part by activating deep, fast-spiking inhibitory neurons. Our data suggest that the net effect of L4 activity is to sharpen the spatial representations of L5 neurons. Thus, we establish a previously unknown translaminar inhibitory circuit in the sensory cortex that acts to enhance the feature selectivity of cortical output.

[1]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[2]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[3]  Jyh-Jang Sun,et al.  Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo. , 2015, Cerebral cortex.

[4]  R. Dolmetsch,et al.  Timothy Syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons , 2012, Nature Neuroscience.

[5]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[6]  Ian R. Wickersham,et al.  Laminarly Orthogonal Excitation of Fast-Spiking and Low-Threshold-Spiking Interneurons in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[7]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[8]  J J Jack,et al.  Synaptic interactions between smooth and spiny neurones in layer 4 of cat visual cortex in vitro , 1998, The Journal of physiology.

[9]  John R Huguenard,et al.  Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex. , 2002, Journal of neurophysiology.

[10]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[11]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[12]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[13]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[14]  Daniel N Hill,et al.  Quality Metrics to Accompany Spike Sorting of Extracellular Signals , 2011, The Journal of Neuroscience.

[15]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[16]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[17]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[18]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[19]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[20]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[21]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[22]  Eugene W. Myers,et al.  Automated Tracking of Whiskers in Videos of Head Fixed Rodents , 2012, PLoS Comput. Biol..

[23]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[24]  M. Mignard,et al.  Paths of information flow through visual cortex. , 1991, Science.

[25]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[26]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[27]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[28]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[29]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[30]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[31]  B. Connors,et al.  Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[33]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[34]  B Sakmann,et al.  Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex , 2000, The Journal of physiology.

[35]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[36]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[37]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[38]  M. Laubach,et al.  Layer-Specific Somatosensory Cortical Activation During Active Tactile Discrimination , 2004, Science.

[39]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[40]  D J Simons,et al.  Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. , 2004, Journal of neurophysiology.

[41]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[42]  Y. Kawaguchi,et al.  Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks withExcitatory Neurons , 2009, The Journal of Neuroscience.

[43]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[44]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[45]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[46]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[47]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[48]  C. Legéndy,et al.  Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. , 1985, Journal of neurophysiology.

[49]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[50]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[51]  Li I. Zhang,et al.  A Feedforward Inhibitory Circuit Mediates Lateral Refinement of Sensory Representation in Upper Layer 2/3 of Mouse Primary Auditory Cortex , 2014, The Journal of Neuroscience.

[52]  B. Sakmann,et al.  Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. , 2009, Cerebral cortex.

[53]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[54]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[55]  J. Malpeli Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[56]  Moritz Helmstaedter,et al.  Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[57]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[58]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .

[59]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.