Pearson equations for discrete orthogonal polynomials: I. Generalized hypergeometric functions and Toda equations

The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studied. The Laguerre–Freud structure semi-infinite matrix that models the shifts by ±1 in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre–Freud matrix is banded. From the well known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijho –Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous Toda for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It also shown that the Kadomtesev– Petvishvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case the deformation do not satisfy a Pearson equation.

[1]  F. Marcellán,et al.  Discrete Semiclassical Orthogonal Polynomials of Class 2 , 2012, Orthogonal Polynomials: Current Trends and Applications.

[2]  E. Laguerre,et al.  Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .

[3]  J. Arvesú,et al.  Some discrete multiple orthogonal polynomials , 2003 .

[4]  Manuel Mañas,et al.  Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy , 2010, Advances in Mathematics.

[5]  Manuel Mañas,et al.  Transformations of quadrilateral lattices , 1997, solv-int/9712017.

[6]  W. Assche,et al.  Orthogonal Polynomials on a Bi-lattice , 2011, 1101.1817.

[7]  Mourad E. H. Ismail,et al.  Discrete Orthogonal Polynomials , 2005 .

[8]  P. Moerbeke,et al.  Generalized Orthogonal Polynomials, Discrete KP and Riemann–Hilbert Problems , 1999, nlin/0009002.

[9]  Manuel Mañas,et al.  Darboux transformations for multidimensional quadrilateral lattices. I , 1997 .

[10]  Manuel Mañas,et al.  Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems , 2013, 1312.0150.

[11]  J. C. Garc'ia-Ardila,et al.  Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy , 2015, 1511.04771.

[12]  H. Capel,et al.  The direct linearisation approach to hierarchies of integrable PDEs in 2 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies , 1990 .

[13]  Manuel Mañas,et al.  Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations , 2018 .

[14]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[15]  W. Assche Encyclopedia of Special Functions: The Askey-Bateman Project , 2020 .

[16]  P. Moerbeke,et al.  Vertex Operator Solutions to the Discrete KP-Hierarchy , 1999, solv-int/9912014.

[17]  P. Clarkson Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations , 2013, 1301.2396.

[18]  D. Dominici Laguerre-Freud equations for Generalized Hahn polynomials of type I , 2018, 1801.02267.

[19]  Manuel Mañas,et al.  Matrix biorthogonal polynomials on the real line: Geronimus transformations , 2018, Bulletin of Mathematical Sciences.

[20]  Manuel Manas,et al.  Revisiting Biorthogonal Polynomials: An LU Factorization Discussion , 2019, Orthogonal Polynomials: Current Trends and Applications.

[21]  Manuel Mañas,et al.  Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies , 2012, 1202.2898.

[22]  Gerardo Ariznabarreta,et al.  Christoffel transformations for multivariate orthogonal polynomials , 2015, J. Approx. Theory.

[23]  Alan L. Jones,et al.  The generalized hypergeometric function , 1970, SIGP.