Fructooligosaccharide production by a truncated Leuconostoc citreum inulosucrase mutant

Abstract Site-directed mutagenesis was performed on IslA4, a truncated form of inulosucrase (IS) derived from Leuconostoc citreum IS that contains only the IS catalytic domain. This truncated form is more hydrolytic than the wild-type enzyme and produces both high-molecular-weight inulin and fructooligosaccharides (FOS). Among the various mutants obtained from IslA4 by following strategies designed for SacB (the levansucrase from Bacillus subtilis), S425A no longer produces inulin, but instead produces FOS exclusively and hydrolyzes sucrose. Reaction conditions were explored to increase FOS productivity by reducing the hydrolysis, resulting in 65% conversion from a 0.67 M sucrose solution. S425A displays complex kinetic behavior in which the transfructosylation rate is described by first-order kinetics, while sucrose hydrolysis follows Michaelis–Menten behavior. This combined model correctly describes both the overall initial reaction rate as well as the reaction evolution for FOS synthesis. S425A IS may be useful for the synthesis of FOS from sucrose.

[1]  E. Rudiño-Piñera,et al.  Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions , 2009, BMC biotechnology.

[2]  T. Ohta,et al.  The UPS: a promising target for breast cancer treatment , 2008, BMC Biochemistry.

[3]  E. Rudiño-Piñera,et al.  Selected mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its biochemical properties. , 2008, Protein engineering, design & selection : PEDS.

[4]  K. Fütterer,et al.  Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase , 2008, BMC Structural Biology.

[5]  C. Olvera,et al.  Functional role of the additional domains in inulosucrase (IslA) from Leuconostoc citreum CW28 , 2008, BMC Biochemistry.

[6]  D. Jahn,et al.  Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. , 2007, The Biochemical journal.

[7]  F. Plou,et al.  Characterization of a beta-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. , 2007, Journal of biotechnology.

[8]  C. Olvera,et al.  Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293 , 2007, Antonie van Leeuwenhoek.

[9]  L. Dijkhuizen,et al.  Single amino acid residue changes in subsite − 1 of inulosucrase from Lactobacillus reuteri 121 strongly influence the size of products synthesized , 2006, The FEBS journal.

[10]  L. Segovia,et al.  Identification and functional characterization of levS, a gene encoding for a levansucrase from Leuconostoc mesenteroides NRRL B-512 F. , 2006, Gene.

[11]  L. Dijkhuizen,et al.  The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. , 2006, Microbiology.

[12]  T. Pons,et al.  Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. , 2005, The Biochemical journal.

[13]  M. N. Ramesh,et al.  Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202 , 2005 .

[14]  E. Castillo,et al.  Synthesis of levan in water-miscible organic solvents. , 2004, Journal of biotechnology.

[15]  A. López-Munguía,et al.  Biochemical properties of inulosucrase from Leuconostoc citreum CW28 used for inulin synthesis , 2004 .

[16]  K. Fütterer,et al.  Structural framework of fructosyl transfer in Bacillus subtilis levansucrase , 2003, Nature Structural Biology.

[17]  Jose M Saavedra,et al.  Effects of fructo-oligosaccharide-supplemented infant cereal: a double-blind, randomized trial , 2003, British Journal of Nutrition.

[18]  C. Olvera,et al.  Molecular Characterization of Inulosucrase from Leuconostoc citreum: a Fructosyltransferase within a Glucosyltransferase , 2003, Journal of bacteriology.

[19]  R. Vogel,et al.  Exopolysaccharide and Kestose Production by Lactobacillus sanfranciscensis LTH2590 , 2003, Applied and Environmental Microbiology.

[20]  L. Dijkhuizen,et al.  Kinetic properties of an inulosucrase from Lactobacillus reuteri 121 , 2003, FEBS letters.

[21]  S. Le Borgne,et al.  Characterization of a cell-associated inulosucrase from a novel source: A Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage of Mayan origin , 2002, Journal of Industrial Microbiology and Biotechnology.

[22]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[23]  L. Hernández,et al.  Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. , 1995, The Biochemical journal.

[24]  R. Chambert,et al.  Immobilisation of levansucrase on calcium phosphate gel strongly increases its polymerase activity. , 1993, Carbohydrate research.

[25]  H W Doelle,et al.  Zymomonas mobilis--science and industrial application. , 1993, Critical reviews in biotechnology.

[26]  R. Chambert,et al.  Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. , 1991, The Biochemical journal.

[27]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[28]  R. Chambert,et al.  Kinetic studies of levansucrase of Bacillus subtilis. , 1974, European journal of biochemistry.