Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinsonâ€TMs disease

Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease Julia Benkert1, Simon Hess2, Shoumik Roy1, Dayne Beccano-Kelly3, Nicole Wiederspohn1, Johanna Duda1, Carsten Simons 1, Komal Patil1, Aisylu Gaifullina1, Nadja Mannal1, Elena Dragicevic1, Desirée Spaich1, Sonja Müller1, Julia Nemeth 1, Helene Hollmann1, Nora Deuter1, Yassine Mousba 3, Christian Kubisch4, Christina Poetschke1, Joerg Striessnig5, Olaf Pongs6, Toni Schneider 7, Richard Wade-Martins3, Sandip Patel8, Rosanna Parlato1, Tobias Frank9, Peter Kloppenburg2 & Birgit Liss 1,10*

[1]  O. Pongs,et al.  NCS-1 Deficiency Affects mRNA Levels of Genes Involved in Regulation of ATP Synthesis and Mitochondrial Stress in Highly Vulnerable Substantia nigra Dopaminergic Neurons , 2019, Front. Mol. Neurosci..

[2]  P. Kaeser,et al.  Mechanisms and regulation of dopamine release , 2019, Current Opinion in Neurobiology.

[3]  Andrew R. Bassett,et al.  Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing , 2019, Nature Communications.

[4]  M. Brini,et al.  Calcium, Dopamine and Neuronal Calcium Sensor 1: Their Contribution to Parkinson’s Disease , 2019, Front. Mol. Neurosci..

[5]  Hannah V. McCue,et al.  Calcium Sensors in Neuronal Function and Dysfunction. , 2019, Cold Spring Harbor perspectives in biology.

[6]  D. Hoffman,et al.  Functional Coupling of Cav2.3 and BK Potassium Channels Regulates Action Potential Repolarization and Short-Term Plasticity in the Mouse Hippocampus , 2019, Front. Cell. Neurosci..

[7]  C. Webber,et al.  Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons , 2019, Human molecular genetics.

[8]  B. Liss,et al.  The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. , 2019, Annual review of pharmacology and toxicology.

[9]  Kieran R. Campbell,et al.  Single-Cell Sequencing of iPSC-Dopamine Neurons Reconstructs Disease Progression and Identifies HDAC4 as a Regulator of Parkinson Cell Phenotypes , 2019, Cell stem cell.

[10]  Zayd M. Khaliq,et al.  Gi/o protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN , 2018, eLife.

[11]  B. Ehrlich,et al.  NCS-1 is a regulator of calcium signaling in health and disease. , 2018, Biochimica et biophysica acta. Molecular cell research.

[12]  H. Okano,et al.  T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease , 2018, Stem cell reports.

[13]  L. Petrucelli,et al.  Converging pathways in neurodegeneration, from genetics to mechanisms , 2018, Nature Neuroscience.

[14]  T. Postmus Genetics of Parkinson's disease , 2018 .

[15]  L. Trudeau,et al.  On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease , 2018, Front. Neurol..

[16]  D. Surmeier,et al.  Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress , 2018, The Journal of clinical investigation.

[17]  A. Singleton,et al.  Genetic risk factors in Parkinson’s disease , 2018, Cell and Tissue Research.

[18]  A. Schapira,et al.  The role of glucocerebrosidase in Parkinson disease pathogenesis , 2018, The FEBS journal.

[19]  John T. Williams,et al.  The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. , 2018, Annual review of physiology.

[20]  D. Surmeier,et al.  Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease , 2017, Experimental Neurology.

[21]  Sohee Jeon,et al.  Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease , 2017, Science.

[22]  M. Hallett,et al.  Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy , 2017, Movement disorders : official journal of the Movement Disorder Society.

[23]  Aldo A. Faisal,et al.  Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons , 2017, Scientific Reports.

[24]  R. Rockhill,et al.  A novel design of a Phase III trial of isradipine in early Parkinson disease (STEADY‐PD III) , 2017, Annals of clinical and translational neurology.

[25]  Zayd M. Khaliq,et al.  Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels , 2017, The Journal of Neuroscience.

[26]  D. James Surmeier,et al.  Selective neuronal vulnerability in Parkinson disease , 2017, Nature Reviews Neuroscience.

[27]  C. Webber,et al.  Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease , 2017, Human molecular genetics.

[28]  J. Scuvée-Moreau,et al.  Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: Contrasting roles of N- and L-type channels. , 2016, European journal of pharmacology.

[29]  W. Oertel,et al.  Current and experimental treatments of Parkinson disease: A guide for neuroscientists , 2016, Journal of neurochemistry.

[30]  D. Bansal,et al.  Risk of Parkinson's Disease in the Users of Antihypertensive Agents: An Evidence from the Meta-Analysis of Observational Studies , 2016, Journal of neurodegenerative diseases.

[31]  P. Henny,et al.  Differential Somatic Ca2+ Channel Profile in Midbrain Dopaminergic Neurons , 2016, The Journal of Neuroscience.

[32]  B. Liss,et al.  Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease , 2016, Journal of neurochemistry.

[33]  A. Schapira,et al.  The relationship between glucocerebrosidase mutations and Parkinson disease , 2016, Journal of neurochemistry.

[34]  A. Schapira,et al.  Endoplasmic reticulum and lysosomal Ca2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts , 2016, Cell calcium.

[35]  A. Dolphin,et al.  The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential , 2015, Pharmacological Reviews.

[36]  Martin Lévesque,et al.  Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons , 2015, Current Biology.

[37]  B. Liss,et al.  Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice , 2015, Scientific Reports.

[38]  M. Rice,et al.  Somatodendritic dopamine release: recent mechanistic insights , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  S. Cragg,et al.  Gating of dopamine transmission by calcium and axonal N‐, Q‐, T‐ and L‐type voltage‐gated calcium channels differs between striatal domains , 2015, The Journal of physiology.

[40]  J. Blesa,et al.  Parkinson’s disease: animal models and dopaminergic cell vulnerability , 2014, Front. Neuroanat..

[41]  C. P. Ford The role of D2-autoreceptors in regulating dopamine neuron activity and transmission , 2014, Neuroscience.

[42]  B. Fakler,et al.  Mutant α-Synuclein Enhances Firing Frequencies in Dopamine Substantia Nigra Neurons by Oxidative Impairment of A-Type Potassium Channels , 2014, The Journal of Neuroscience.

[43]  B. Bean,et al.  Inhibition of A-Type Potassium Current by the Peptide Toxin SNX-482 , 2014, The Journal of Neuroscience.

[44]  M. Beckstead,et al.  Aging Decreases L-Type Calcium Channel Currents and Pacemaker Firing Fidelity in Substantia Nigra Dopamine Neurons , 2014, The Journal of Neuroscience.

[45]  Masahiko Watanabe,et al.  Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons , 2014, Brain : a journal of neurology.

[46]  S. Gygi,et al.  iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis , 2014, Nature Communications.

[47]  D. Surmeier,et al.  Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase , 2014, Nature Neuroscience.

[48]  J. Hescheler,et al.  How “Pharmacoresistant” is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels? , 2013, Pharmaceuticals.

[49]  J. Bolam,et al.  Living on the edge with too many mouths to feed: Why dopamine neurons die , 2012, Movement disorders : official journal of the Movement Disorder Society.

[50]  D. Surmeier,et al.  Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease , 2012, Nature Neuroscience.

[51]  K. Tieu,et al.  A guide to neurotoxic animal models of Parkinson's disease. , 2011, Cold Spring Harbor perspectives in medicine.

[52]  Paul T. Schumacker,et al.  Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1 , 2010, Nature.

[53]  R. Burke,et al.  Clinical progression in Parkinson disease and the neurobiology of axons , 2010, Annals of neurology.

[54]  N. Hamasaki-Katagiri,et al.  Neuronal Calcium Sensor-1 (Ncs1p) Is Up-regulated by Calcineurin to Promote Ca2+ Tolerance in Fission Yeast* , 2009, The Journal of Biological Chemistry.

[55]  J. Olsen,et al.  L‐type calcium channel blockers and Parkinson disease in Denmark , 2009, Annals of neurology.

[56]  D. James Surmeier,et al.  Robust Pacemaking in Substantia Nigra Dopaminergic Neurons , 2009, The Journal of Neuroscience.

[57]  A. Laude,et al.  Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling , 2009, The FEBS journal.

[58]  J. Paul Bolam,et al.  Faculty Opinions recommendation of Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. , 2008 .

[59]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[60]  Michael Ruse,et al.  Mechanisms and Models , 2007 .

[61]  M. Weiergräber,et al.  Altered Seizure Susceptibility in Mice Lacking the Cav2.3 E‐type Ca2+ Channel , 2006, Epilepsia.

[62]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[63]  Jochen Roeper,et al.  Selective Coupling of T-Type Calcium Channels to SK Potassium Channels Prevents Intrinsic Bursting in Dopaminergic Midbrain Neurons , 2002, The Journal of Neuroscience.

[64]  M. Weiergräber,et al.  Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca(2+) channels. , 2002, Molecular endocrinology.

[65]  B. Liss,et al.  Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription , 2001, The EMBO journal.

[66]  Jochen Roeper,et al.  Differential Expression of the Small-Conductance, Calcium-Activated Potassium Channel SK3 Is Critical for Pacemaker Control in Dopaminergic Midbrain Neurons , 2001, The Journal of Neuroscience.

[67]  W. Nastainczyk,et al.  Immunodetection of α1E Voltage-gated Ca2+ Channel in Chromogranin-positive Muscle Cells of Rat Heart, and in Distal Tubules of Human Kidney , 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[68]  A. Graybiel,et al.  The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. , 1999, Brain : a journal of neurology.

[69]  A. Graybiel,et al.  The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. , 1999, Brain : a journal of neurology.

[70]  S. Tabrizi,et al.  Mitochondria in the etiology and pathogenesis of parkinson's disease , 1998, Annals of neurology.

[71]  G. Meredith,et al.  MPTP mouse models of Parkinson's disease: an update. , 2011, Journal of Parkinson's disease.

[72]  G. Dayanithi,et al.  Interaction of SNX482 with domains III and IV inhibits activation gating of alpha(1E) (Ca(V)2.3) calcium channels. , 2001, Biophysical journal.

[73]  K. Johnson An Update. , 1984, Journal of food protection.