The Balian–Low theorem for symplectic lattices in higher dimensions

Abstract The Balian–Low theorem expresses the fact that time–frequency concentration is incompatible with non-redundancy for Gabor systems that form orthonormal or Riesz bases for L 2 ( R ) . We extend the Balian–Low theorem for Riesz bases to higher dimensions, obtaining a weak form valid for all sets of time–frequency shifts which form a lattice in R 2d , and a strong form valid for symplectic lattices in R 2d . For the orthonormal basis case, we obtain a strong form valid for general non-lattice sets which are symmetric with respect to the origin.

[1]  Yang Wang,et al.  Lattice tiling and the Weyl—Heisenberg frames , 2001 .

[2]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[3]  R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .

[4]  G. Battle Heisenberg proof of the Balian-Low theorem , 1988 .

[5]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[6]  Thomas Strohmer,et al.  Optimal OFDM design for time-frequency dispersive channels , 2003, IEEE Trans. Commun..

[7]  H. Feichtinger,et al.  Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view , 1993 .

[8]  G. Folland Harmonic analysis in phase space , 1989 .

[9]  Karlheinz Gröchenig,et al.  Aspects of Gabor analysis on locally compact abelian groups , 1998 .

[10]  Y. Zeevi,et al.  Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .

[11]  Christopher Heil,et al.  WIENER AMALGAM SPACES IN GENERALIZED HARMONIC ANALYSIS AND WAVELET THEORY , 1990 .

[12]  O. Christensen,et al.  Density of Gabor Frames , 1999 .

[13]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[14]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .

[15]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[16]  Youming Liu,et al.  The Uniformity of Non-Uniform Gabor Bases , 2003, Adv. Comput. Math..

[17]  Chung-I Tan,et al.  A Passion for Physics: Essays in Honor of Geoffrey Chew , 1986 .

[18]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[19]  Ingrid Daubechies,et al.  Two theorems on lattice expansions , 1993, IEEE Trans. Inf. Theory.

[20]  J. Ramanathan,et al.  Incompleteness of Sparse Coherent States , 1995 .

[21]  John J. Benedetto,et al.  The Balian-Low theorem and regularity of Gabor systems , 2003 .