A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation☆

Abstract In this paper, a new Crank–Nicolson finite element method for the time-fractional subdiffusion equation is developed, in which a novel time discretization called the modified L1 method is used to discretize the Riemann–Liouville fractional derivative. The present method is unconditionally stable and convergent of order O ( τ 1 + β + h r + 1 ) , where β ∈ ( 0 , 1 ) , τ and h are the step sizes in time and space, respectively, and r is the degree of the piecewise polynomial space. The derived method is reduced to the classical Crank–Nicolson method when β → 1 . The new time discretization is also used to solve the fractional cable equation. And the unconditional stability and convergence are given. Numerical examples are provided which support the theoretical analysis. The comparison with the existing methods are also given, which shows good performances of the present methods.

[1]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[4]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[5]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[8]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[9]  Hong Wang,et al.  Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..

[10]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[11]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[12]  Changpin Li,et al.  A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..

[13]  Mark M Meerschaert,et al.  FRACTIONAL PEARSON DIFFUSIONS. , 2013, Journal of mathematical analysis and applications.

[14]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[15]  I. Turner,et al.  Two New Implicit Numerical Methods for the Fractional Cable Equation , 2011 .

[16]  S. Karimi Vanani,et al.  Tau approximate solution of fractional partial differential equations , 2011, Comput. Math. Appl..

[17]  Kassem Mustapha,et al.  Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .

[18]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[19]  Roberto Garrappa,et al.  A family of Adams exponential integrators for fractional linear systems , 2013, Comput. Math. Appl..

[20]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[21]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[22]  Blas M Vinagre Jara,et al.  Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[24]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[25]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[26]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[27]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[28]  Fanhai Zeng,et al.  Spectral approximations to the fractional integral and derivative , 2012 .

[29]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[30]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[31]  Changpin Li,et al.  Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..

[32]  Om P. Agrawal,et al.  Response of a diffusion‐wave system subjected to deterministic and stochastic fields , 2003 .

[33]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[34]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[35]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[36]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[37]  S. B. Yuste,et al.  A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations , 2013 .

[38]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[39]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Santos B. Yuste,et al.  A finite difference method with non-uniform timesteps for fractional diffusion equations , 2011, Comput. Phys. Commun..

[41]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[42]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[43]  Shaher Momani,et al.  Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations , 2007, Comput. Math. Appl..

[44]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[45]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[46]  Roberto Garrappa,et al.  Exponential integrators for time–fractional partial differential equations , 2013 .

[47]  Zhi-zhong Sun,et al.  A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions , 2012, J. Comput. Phys..

[48]  Ercília Sousa,et al.  A second order explicit finite difference method for the fractional advection diffusion equation , 2012, Comput. Math. Appl..

[49]  Lu-ming Zhang,et al.  Implicit compact difference schemes for the fractional cable equation , 2012 .

[50]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..