A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation☆
暂无分享,去创建一个
[1] Xuan Zhao,et al. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..
[2] I. Podlubny. Fractional differential equations , 1998 .
[3] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[4] G. Zaslavsky. Chaos, fractional kinetics, and anomalous transport , 2002 .
[5] Diego A. Murio,et al. Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..
[6] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[7] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[8] Ya-Nan Zhang,et al. Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..
[9] Hong Wang,et al. Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..
[10] Enrico Scalas,et al. Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.
[11] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[12] Changpin Li,et al. A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..
[13] Mark M Meerschaert,et al. FRACTIONAL PEARSON DIFFUSIONS. , 2013, Journal of mathematical analysis and applications.
[14] R. Magin. Fractional Calculus in Bioengineering , 2006 .
[15] I. Turner,et al. Two New Implicit Numerical Methods for the Fractional Cable Equation , 2011 .
[16] S. Karimi Vanani,et al. Tau approximate solution of fractional partial differential equations , 2011, Comput. Math. Appl..
[17] Kassem Mustapha,et al. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .
[18] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[19] Roberto Garrappa,et al. A family of Adams exponential integrators for fractional linear systems , 2013, Comput. Math. Appl..
[20] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[21] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[22] Blas M Vinagre Jara,et al. Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[23] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[24] Weihua Deng,et al. Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..
[25] Yangquan Chen,et al. Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..
[26] Yangquan Chen,et al. Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .
[27] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[28] Fanhai Zeng,et al. Spectral approximations to the fractional integral and derivative , 2012 .
[29] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[30] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[31] Changpin Li,et al. Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..
[32] Om P. Agrawal,et al. Response of a diffusion‐wave system subjected to deterministic and stochastic fields , 2003 .
[33] Zhi-Zhong Sun,et al. Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..
[34] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[35] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[36] Fawang Liu,et al. Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..
[37] S. B. Yuste,et al. A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations , 2013 .
[38] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[39] Barkai,et al. From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[40] Santos B. Yuste,et al. A finite difference method with non-uniform timesteps for fractional diffusion equations , 2011, Comput. Phys. Commun..
[41] Fawang Liu,et al. The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..
[42] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[43] Shaher Momani,et al. Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations , 2007, Comput. Math. Appl..
[44] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[45] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[46] Roberto Garrappa,et al. Exponential integrators for time–fractional partial differential equations , 2013 .
[47] Zhi-zhong Sun,et al. A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions , 2012, J. Comput. Phys..
[48] Ercília Sousa,et al. A second order explicit finite difference method for the fractional advection diffusion equation , 2012, Comput. Math. Appl..
[49] Lu-ming Zhang,et al. Implicit compact difference schemes for the fractional cable equation , 2012 .
[50] Fawang Liu,et al. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..