Global Materials Structure Search with Chemically Motivated Coordinates.

Identification of relevant reaction pathways in ever more complex composite materials and nanostructures poses a central challenge to computational materials discovery. Efficient global structure search, tailored to identify chemically relevant intermediates, could provide the necessary first-principles atomistic insight to enable a rational process design. In this work we modify a common feature of global geometry optimization schemes by employing automatically generated collective curvilinear coordinates. The similarity of these coordinates to molecular vibrations enhances the generation of chemically meaningful trial structures for covalently bound systems. In the application to hydrogenated Si clusters, we concomitantly observe a significantly increased efficiency in identifying low-energy structures and exploit it for an extensive sampling of potential products of silicon-cluster soft landing on Si(001) surfaces.

[1]  D. Wales,et al.  A conformational factorisation approach for estimating the binding free energies of macromolecules. , 2014, Physical chemistry chemical physics : PCCP.

[2]  David J. Wales,et al.  Quasi-Continuous Interpolation Scheme for Pathways between Distant Configurations. , 2012, Journal of chemical theory and computation.

[3]  Vijay Kumar,et al.  Hydrogenated silicon fullerenes: effects of H on the stability of metal-encapsulated silicon clusters. , 2003, Physical review letters.

[4]  D. Bochicchio,et al.  Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. , 2010, Nano letters.

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Stefan Goedecker,et al.  The performance of minima hopping and evolutionary algorithms for cluster structure prediction. , 2009, The Journal of chemical physics.

[7]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[8]  Joachim Sauer,et al.  Effect of Anharmonicity on Adsorption Thermodynamics. , 2014, Journal of chemical theory and computation.

[9]  W. Caminati,et al.  Internal hydrogen bond, torsional motion, and molecular properties of 2-methoxyethylamine by microwave spectroscopy Methyl barrier to internal rotation for 2-methoxyethanol , 1980 .

[10]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[11]  C. Scheurer,et al.  A general nuclear motion Hamiltonian and non-internal curvilinear coordinates. , 2013, The Journal of chemical physics.

[12]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[13]  A. Nakajima,et al.  Heterodimerization via the Covalent Bonding of Ta@Si16 Nanoclusters and C60 Molecules , 2015 .

[14]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[15]  R. Ahlrichs,et al.  Geometry optimization in generalized natural internal coordinates , 1999 .

[16]  Johannes M. Dieterich,et al.  OGOLEM: Global cluster structure optimisation for arbitrary mixtures of flexible molecules. A multiscaling, object-oriented approach , 2010 .

[17]  Constrained optimization in delocalized internal coordinates , 1997 .

[18]  R. Abagyan,et al.  Soft protein–protein docking in internal coordinates , 2002, Protein science : a publication of the Protein Society.

[19]  T. Frauenheim,et al.  Molecular dynamics simulations of CFx (x = 2, 3) molecules at Si3N4 and SiO2 surfaces , 2006 .

[20]  Jon Baker,et al.  The generation and use of delocalized internal coordinates in geometry optimization , 1996 .

[21]  K. Reuter,et al.  MSi₂₀H₂₀ aggregates: from simple building blocks to highly magnetic functionalized materials. , 2013, ACS nano.

[22]  G. Rossi,et al.  Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  K. Reuter,et al.  Bistability loss as a key feature in azobenzene (non-)switching on metal surfaces. , 2012, Angewandte Chemie.

[24]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[25]  Howard R. Mayne,et al.  Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .

[26]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[27]  A. Fortunelli,et al.  Interface-stabilized phases of metal-on-oxide nanodots. , 2008, ACS nano.

[28]  Peter Pulay,et al.  Geometry optimization in redundant internal coordinates , 1992 .

[29]  Masao Iwamatsu,et al.  Global geometry optimization of silicon clusters using the space-fixed genetic algorithm , 2000 .

[30]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[31]  Paul N. Mortenson,et al.  Energy landscapes: from clusters to biomolecules , 2007 .

[32]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.