Reliable and Elastic Propagation of Cortical Seizures In Vivo.

Mapping the fine-scale neural activity that underlies epilepsy is key to identifying potential control targets of this frequently intractable disease. Yet, the detailed in vivo dynamics of seizure progression in cortical microcircuits remain poorly understood. We combine fast (30-Hz) two-photon calcium imaging with local field potential (LFP) recordings to map, cell by cell, the spread of locally induced (4-AP or picrotoxin) seizures in anesthetized and awake mice. Using single-layer and microprism-assisted multilayer imaging in different cortical areas, we uncover reliable recruitment of local neural populations within and across cortical layers, and we find layer-specific temporal delays, suggesting an initial supra-granular invasion followed by deep-layer recruitment during lateral seizure spread. Intriguingly, despite consistent progression pathways, successive seizures show pronounced temporal variability that critically depends on GABAergic inhibition. We propose an epilepsy circuit model resembling an elastic meshwork, wherein ictal progression faithfully follows preexistent pathways but varies flexibly in time, depending on the local inhibitory restraint.

[1]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Rafael Yuste,et al.  Endogenous Sequential Cortical Activity Evoked by Visual Stimuli , 2015, The Journal of Neuroscience.

[3]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[4]  Mario Cammarota,et al.  Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy , 2013, The Journal of physiology.

[5]  K. Moxon,et al.  Neuronal synchrony and the transition to spontaneous seizures , 2013, Experimental Neurology.

[6]  B W Connors,et al.  Layer‐Specific Pathways for the Horizontal Propagation of Epileptiform Discharges in Neocortex , 1998, Epilepsia.

[7]  Y. Schiller,et al.  Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo. , 2012, Journal of neurophysiology.

[8]  Laura A. Ewell,et al.  Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention , 2015, The Journal of Neuroscience.

[9]  J. Rubenstein,et al.  GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior , 2013, Nature Neuroscience.

[10]  M. Carandini,et al.  Cortical State Determines Global Variability and Correlations in Visual Cortex , 2015, The Journal of Neuroscience.

[11]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[12]  Wolfgang Löscher,et al.  What new modeling approaches will help us identify promising drug treatments? , 2014, Advances in experimental medicine and biology.

[13]  K. Harris Neural signatures of cell assembly organization , 2005, Nature Reviews Neuroscience.

[14]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[15]  P. Beleza Acute Symptomatic Seizures: A Clinically Oriented Review , 2012, The neurologist.

[16]  R. Yuste,et al.  Evidence of an inhibitory restraint of seizure activity in humans , 2012, Nature Communications.

[17]  Sydney S Cash,et al.  Slow Spatial Recruitment of Neocortex during Secondarily Generalized Seizures and Its Relation to Surgical Outcome , 2015, The Journal of Neuroscience.

[18]  M. Levene,et al.  Microprisms for in vivo multilayer cortical imaging. , 2009, Journal of neurophysiology.

[19]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[20]  M. Avoli,et al.  GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity , 2011, Progress in Neurobiology.

[21]  D. Prince,et al.  Control mechanisms in cortical epileptogenic foci. "Surround" inhibition. , 1967, Archives of neurology.

[22]  M. Levene,et al.  In vivo imaging of deep cortical layers using a microprism. , 2009, Journal of visualized experiments : JoVE.

[23]  Magdolna Szente,et al.  Quinine, a Blocker of Neuronal Cx36 Channels, Suppresses Seizure Activity in Rat Neocortex In Vivo , 2005, Epilepsia.

[24]  Focal cortical seizures start as standing waves and propagate respecting homotopic connectivity , 2017 .

[25]  R. Yuste,et al.  Glial Calcium Waves are Triggered by Seizure Activity and Not Essential for Initiating Ictal Onset or Neurovascular Coupling , 2017, Cerebral cortex.

[26]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[27]  Omar J. Ahmed,et al.  Neuronal Ensemble Synchrony during Human Focal Seizures , 2014, The Journal of Neuroscience.

[28]  Z. Somogyvári,et al.  Laminar analysis of initiation and spread of epileptiform discharges in three in vitro models , 2006, Brain Research Bulletin.

[29]  S. Rothman,et al.  The therapeutic potential of focal cooling for neocortical epilepsy , 2009, Neurotherapeutics.

[30]  R. Traub,et al.  Electrographic Waveform Structure Predicts Laminar Focus Location in a Model of Temporal Lobe Seizures In Vitro , 2015, PloS one.

[31]  Rafael Yuste,et al.  Calcium oscillations in neocortical astrocytes under epileptiform conditions. , 2002, Journal of neurobiology.

[32]  R. Yuste,et al.  Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed , 2007, The Journal of Neuroscience.

[33]  B. Connors Initiation of synchronized neuronal bursting in neocortex , 1984, Nature.

[34]  Jason N. MacLean,et al.  Neural Circuits , 2022 .

[35]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[36]  Tomoki Fukai,et al.  Prototypic Seizure Activity Driven by Mature Hippocampal Fast-Spiking Interneurons , 2010, The Journal of Neuroscience.

[37]  Yevgeny Berdichevsky,et al.  Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations , 2015, The Journal of Neuroscience.

[38]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[39]  S. Moss,et al.  A Functional Comparison of the Antagonists Bicuculline and Picrotoxin at Recombinant GABAA Receptors , 1996, Neuropharmacology.

[40]  R. Yuste,et al.  Calcium imaging of epileptiform events with single-cell resolution. , 2001, Journal of neurobiology.

[41]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[42]  Emery N Brown,et al.  Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. , 2010, Brain : a journal of neurology.

[43]  A. Morales-Villagrán,et al.  Preferential stimulation of glutamate release by 4-aminopyridine in rat striatum in vivo , 1996, Neurochemistry International.

[44]  L. Guan,et al.  Epileptiform activity can be initiated in various neocortical layers: an optical imaging study. , 1999, Journal of neurophysiology.

[45]  S. Charpier,et al.  Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures , 2007, The Journal of Neuroscience.

[46]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[47]  D. Prince,et al.  The lateral spread of ictal discharges in neocortical brain slices , 1990, Epilepsy Research.

[48]  Rosa Cossart,et al.  Awake hippocampal reactivations project onto orthogonal neuronal assemblies , 2016, Science.

[49]  T. Schwartz,et al.  Dynamic Neurovascular Coupling and Uncoupling during Ictal Onset, Propagation, and Termination Revealed by Simultaneous In Vivo Optical Imaging of Neural Activity and Local Blood Volume , 2012, Cerebral cortex.

[50]  Mark R. Bower,et al.  Spatiotemporal neuronal correlates of seizure generation in focal epilepsy , 2012, Epilepsia.

[51]  Vikaas S. Sohal,et al.  Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures , 2017, Neuron.

[52]  K. Harris,et al.  Gating of Sensory Input by Spontaneous Cortical Activity , 2013, The Journal of Neuroscience.

[53]  Hillel Adesnik,et al.  A direct translaminar inhibitory circuit tunes cortical output , 2015, Nature Neuroscience.

[54]  M. Carandini,et al.  Cortical seizure propagation respects functional connectivity underlying sensory processing , 2016 .

[55]  G. Carmignoto,et al.  Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity , 2015, The Journal of Neuroscience.

[56]  Calvin J. Schneider,et al.  Resolution revolution: epilepsy dynamics at the microscale , 2015, Current Opinion in Neurobiology.

[57]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[58]  R. Cossart,et al.  GABAergic inhibition shapes interictal dynamics in awake epileptic mice. , 2015, Brain : a journal of neurology.

[59]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[60]  M. Kokaia,et al.  Global Optogenetic Activation of Inhibitory Interneurons during Epileptiform Activity , 2014, The Journal of Neuroscience.

[61]  S. Schiff,et al.  Interneuron and pyramidal cell interplay during in vitro seizure-like events. , 2006, Journal of neurophysiology.

[62]  Brenda C. Shields,et al.  Thy1-GCaMP6 Transgenic Mice for Neuronal Population Imaging In Vivo , 2014, PloS one.

[63]  Ivan Soltesz,et al.  Beyond the hammer and the scalpel: selective circuit control for the epilepsies , 2015, Nature Neuroscience.

[64]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[65]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[66]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[67]  Sylvain Rheims,et al.  Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses. , 2008, Journal of neurophysiology.

[68]  Brendon O. Watson,et al.  Internal Dynamics Determine the Cortical Response to Thalamic Stimulation , 2005, Neuron.

[69]  B. Connors,et al.  Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. , 1989, Journal of neurophysiology.

[70]  R. Clay Reid,et al.  Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms , 2013, Neuron.

[71]  W. Stacey,et al.  On the nature of seizure dynamics. , 2014, Brain : a journal of neurology.

[72]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[73]  M. Szente,et al.  Aminopyridine-induced seizure activity. , 1979, Electroencephalography and clinical neurophysiology.

[74]  I. Soltesz,et al.  Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks , 2013, Proceedings of the National Academy of Sciences.

[75]  R. Yuste,et al.  Cortical Control of Spatial Resolution by VIP+ Interneurons , 2016, The Journal of Neuroscience.