Multiscale Modeling of Lignocellulosic Biomass

[1]  Raymundo Hernández-Esparza,et al.  Oligolignols within lignin-adhesive formulations drive their Young's modulus: A ReaxFF-MD study , 2017 .

[2]  P. Formánek,et al.  Enzymatic Degradation of Lignin in Soil: A Review , 2017 .

[3]  E. Dinjus,et al.  Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis , 2017 .

[4]  E. Ranzi,et al.  Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis , 2017 .

[5]  A. Sánchez-González,et al.  The role of weak interactions in lignin polymerization , 2017, Journal of Molecular Modeling.

[6]  H. Kawamoto Lignin pyrolysis reactions , 2017, Journal of Wood Science.

[7]  Christopher W. Johnson,et al.  Opportunities and challenges in biological lignin valorization. , 2016, Current Opinion in Biotechnology.

[8]  Romain Rémond,et al.  Design and optimization of industrial woody biomass pretreatment addressed by DryKiln_CRP, a multiscale computational model: Particle, bed, and dryer levels , 2016 .

[9]  Andrés Anca-Couce,et al.  Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis , 2016 .

[10]  Jeremy C. Smith,et al.  Enhanced sampling simulation analysis of the structure of lignin in the THF-water miscibility gap. , 2016, Physical chemistry chemical physics : PCCP.

[11]  Jingyao Zhao,et al.  Modeling conventional drying of wood: Inclusion of a moving evaporation interface , 2016 .

[12]  G. Beckham,et al.  Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria† , 2015 .

[13]  G. Huber,et al.  Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. , 2015, Chemical reviews.

[14]  V. Pareek,et al.  Biomass pyrolysis—A review of modelling, process parameters and catalytic studies , 2015 .

[15]  F. G. Calvo-Flores,et al.  Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications , 2015 .

[16]  Nivedita Jaiswal,et al.  Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation , 2015, Journal of biomolecular structure & dynamics.

[17]  D. Kasymov,et al.  Modeling of Thermophysical Processes in the Ignition of a Small Wooden Plank , 2015 .

[18]  M. Alcalde Engineering the ligninolytic enzyme consortium. , 2015, Trends in biotechnology.

[19]  M. Buehler,et al.  Molecular deformation mechanisms of the wood cell wall material. , 2015, Journal of the mechanical behavior of biomedical materials.

[20]  Christopher W. Johnson,et al.  Lignin valorization through integrated biological funneling and chemical catalysis , 2014, Proceedings of the National Academy of Sciences.

[21]  Jalel Labidi,et al.  Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature , 2014 .

[22]  A. Beste,et al.  ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production. , 2014, The journal of physical chemistry. A.

[23]  Wei-min Li,et al.  Molecular dynamic simulation study on pyrolytic behaviour of xylan , 2013 .

[24]  Dae Won Cho,et al.  Effects of alkoxy groups on arene rings of lignin β-O-4 model compounds on the efficiencies of single electron transfer-promoted photochemical and enzymatic C-C Bond Cleavage Reactions. , 2013, The Journal of organic chemistry.

[25]  K. Kruus,et al.  On the factors affecting product distribution in laccase-catalyzed oxidation of a lignin model compound vanillyl alcohol: experimental and computational evaluation. , 2013, Organic & biomolecular chemistry.

[26]  A. Teimouri,et al.  Synthesis, spectroscopic characterization and DFT calculations of β-O-4 type lignin model compounds. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[27]  J. Kubicki,et al.  Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. , 2013, The journal of physical chemistry. B.

[28]  John Ralph,et al.  Metabolic engineering of novel lignin in biomass crops. , 2012, The New phytologist.

[29]  A. Kruse,et al.  Modeling the Lignin Degradation Kinetics in an Ethanol/Formic Acid Solvolysis Approach. Part 1. Kinetic Model Development , 2012 .

[30]  R. Basosi,et al.  The nature of tryptophan radicals involved in the long‐range electron transfer of lignin peroxidase and lignin peroxidase‐like systems: Insights from quantum mechanical/molecular mechanics simulations , 2012, Proteins.

[31]  Mark F. Davis,et al.  Radical coupling reactions in lignin synthesis: a density functional theory study. , 2012, The journal of physical chemistry. B.

[32]  K. Mazeau,et al.  Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry. , 2012, The journal of physical chemistry. B.

[33]  Jerry M. Parks,et al.  Molecular simulation as a tool for studying lignin , 2012 .

[34]  S. Krischok,et al.  Valence band structure of cellulose and lignin studied by XPS and DFT , 2012, Cellulose.

[35]  Jeremy C. Smith,et al.  Simulation analysis of the temperature dependence of lignin structure and dynamics. , 2011, Journal of the American Chemical Society.

[36]  J. Kubicki,et al.  Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study. , 2011, Physical chemistry chemical physics : PCCP.

[37]  Wlodzimierz Blasiak,et al.  Modeling Study of Woody Biomass: Interactions of Cellulose, Hemicellulose, and Lignin , 2011 .

[38]  R. Parthasarathi,et al.  Theoretical Study of the Remarkably Diverse Linkages in Lignin , 2011 .

[39]  G. Zeng,et al.  Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile , 2011, PloS one.

[40]  Jeremy C. Smith,et al.  Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Rahul Singh,et al.  The emerging role for bacteria in lignin degradation and bio-product formation. , 2011, Current opinion in biotechnology.

[42]  Edward A Bayer,et al.  Applications of computational science for understanding enzymatic deconstruction of cellulose. , 2011, Current opinion in biotechnology.

[43]  Carlos A. Grande,et al.  Vanillin production from lignin oxidation in a batch reactor , 2010 .

[44]  Yi-ru Chen,et al.  Macromolecular replication during lignin biosynthesis. , 2010, Phytochemistry.

[45]  Shankar Kalyanasundaram,et al.  WallGen, Software to Construct Layered Cellulose-Hemicellulose Networks and Predict Their Small Deformation Mechanics1 , 2009, Plant Physiology.

[46]  Nilay Shah,et al.  Multiscale modelling of biomass pretreatment for biofuels production , 2009 .

[47]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[48]  Jeremy C. Smith,et al.  A molecular mechanics force field for lignin , 2009, J. Comput. Chem..

[49]  T. Ida,et al.  Fragment distribution of thermal decomposition for lignin monomer by QMD calculations using the excited and charged model molecules , 2008 .

[50]  T. Ida,et al.  Simulation of SIMS for monomer and dimer of lignin under the assumption of thermal decomposition using QMD method , 2008 .

[51]  M. Afzal,et al.  Modeling the Heat and Mass Transfer in Microwave Drying of White Oak , 2008 .

[52]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .

[53]  K. Mazeau,et al.  Molecular dynamics simulations of a guaiacyl β‐O‐4 lignin model compound: Examination of intramolecular hydrogen bonding and conformational flexibility , 2004, Biopolymers.

[54]  L. Eriksson,et al.  A Density Functional Theory Study of Coniferyl Alcohol Intermonomeric Cross Linkages in Lignin - Three-Dimensional Structures, Stabilities and the Thermodynamic Control Hypothesis , 2003 .

[55]  Mauro C. Santos,et al.  Estudos da deposição em subtensão de cádmio sobre ouro policristalino na presença de diferentes ânions co-adsorvidos , 2001 .

[56]  A. R. Forrester,et al.  Predicting the Macromolecular Structure and Properties of Lignin and Comparison with Synthetically Produced Polymers , 2000 .

[57]  P. Carloni,et al.  Molecular dynamics calculations on peroxidases: the effect of calcium ions on protein structure , 1996, JBIC Journal of Biological Inorganic Chemistry.

[58]  G. W. Bailey,et al.  The mystery of the lignin-carbohydrate complex: a computational approach , 1996 .

[59]  K. Marat,et al.  Conformational analysis and 2D NMR assignment strategies for lignin model compounds. The structure of acetoguaiacyl- dehydro-diisoeugenol methyl ether , 1996 .

[60]  R. Atalla,et al.  Cellulose-Lignin Interactions (A Computational Study) , 1995, Plant physiology.

[61]  P. Carloni,et al.  Molecular dynamics studies on peroxidases: a structural model for horseradish peroxidase and a substrate adduct. , 1994, Biochemistry.

[62]  Monica Roman,et al.  Modelling of biomass combustion process , 2011 .

[63]  T. Elder Oxidation of a Lignin Model Compound by the Veratryl Alcohol Cation Radical. Results from Molecular Orbital Calculations , 1997 .

[64]  K. Eriksson,et al.  A Molecular Mechanics Investigation of Lignin Structure. I. Conformational Analysis of 1-Phenyl-2-Phenoxy-1,3-Propanediol Using MM 3 , 1995 .