An implicit locking‐free B‐spline Material Point Method for large strain geotechnical modelling

[1]  Z. Shan,et al.  Recent Technological and Methodological Advances for the Investigation of Submarine Landslides , 2022, Journal of Marine Science and Engineering.

[2]  M. Hicks,et al.  Fully implicit, stabilised MPM simulation of large-deformation problems in two-phase elastoplastic geomaterials , 2022, Computers and Geotechnics.

[3]  Zhilong Huang,et al.  An improved quadrature scheme in B-spline material point method for large-deformation problem analysis , 2022, Engineering Analysis with Boundary Elements.

[4]  G. Moutsanidis,et al.  Treatment of near-incompressibility and volumetric locking in higher order material point methods , 2022, Computer Methods in Applied Mechanics and Engineering.

[5]  C. Augarde,et al.  Numerical modelling of large deformation problems in geotechnical engineering: A state-of-the-art review , 2021, Soils and Foundations.

[6]  M. Pastor,et al.  Toward a local maximum‐entropy material point method at finite strain within a B‐free approach , 2021, International Journal for Numerical Methods in Engineering.

[7]  Rodrigo Salgado,et al.  Simulating penetration problems in incompressible materials using the material point method , 2021 .

[8]  William M. Coombs,et al.  An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements , 2021, International Journal for Numerical Methods in Engineering.

[9]  Pedro Navas,et al.  On the dynamic assessment of the Local-Maximum Entropy Material Point Method through an Explicit Predictor–Corrector Scheme , 2021 .

[10]  Manuel Pastor,et al.  Local Maximum Entropy Material Point Method applied to quasi-brittle fracture , 2020 .

[11]  William M. Coombs,et al.  AMPLE: A Material Point Learning Environment , 2020, Adv. Eng. Softw..

[12]  M. Berzins,et al.  A convected particle least square interpolation material point method , 2019, International Journal for Numerical Methods in Engineering.

[13]  C. Vuik,et al.  Conservative Taylor least squares reconstruction with application to material point methods , 2018, International Journal for Numerical Methods in Engineering.

[14]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[15]  Susana López-Querol,et al.  Optimal transportation meshfree method in geotechnical engineering problems under large deformation regime , 2018, International Journal for Numerical Methods in Engineering.

[16]  William M. Coombs,et al.  Overcoming volumetric locking in material point methods , 2018 .

[17]  Yong Gan,et al.  Enhancement of the material point method using B‐spline basis functions , 2018 .

[18]  William M. Coombs,et al.  Imposition of essential boundary conditions in the material point method , 2018 .

[19]  Fan Zhang,et al.  Incompressible material point method for free surface flow , 2017, J. Comput. Phys..

[20]  Antonio Gens,et al.  Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM) , 2017 .

[21]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[22]  Wojciech Tomasz Sołowski,et al.  Evaluation of material point method for use in geotechnics , 2015 .

[23]  M. Randolph,et al.  Large deformation finite element analyses in geotechnical engineering , 2015 .

[24]  K. Kamrin,et al.  Continuum modelling and simulation of granular flows through their many phases , 2014, Journal of Fluid Mechanics.

[25]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[26]  Pedro Arduino,et al.  Mitigating kinematic locking in the material point method , 2012, J. Comput. Phys..

[27]  Pierre-Yves Lagrée,et al.  The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology , 2011, Journal of Fluid Mechanics.

[28]  William M. Coombs,et al.  Non-associated Reuleaux plasticity: Analytical stress integration and consistent tangent for finite deformation mechanics , 2011 .

[29]  A. Bower Applied Mechanics of Solids , 2009 .

[30]  M. Berzins,et al.  Analysis and reduction of quadrature errors in the material point method (MPM) , 2008 .

[31]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[32]  Deborah Sulsky,et al.  An energy‐consistent material‐point method for dynamic finite deformation plasticity , 2006 .

[33]  James E. Guilkey,et al.  Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method , 2003 .

[34]  D. V. Griffiths,et al.  SLOPE STABILITY ANALYSIS BY FINITE ELEMENTS , 1999 .

[35]  N. Morgenstern,et al.  Stability Coefficients for Earth Slopes , 1960 .

[36]  G. G. Meyerhof The Ultimate Bearing Capacity of Foudations , 1951 .

[37]  Y. Yamaguchi,et al.  Extended B‐spline‐based implicit material point method enhanced by F‐bar projection method to suppress pressure oscillation , 2023 .

[38]  William M. Coombs,et al.  An implicit high-order material point method. , 2017 .

[39]  K. Soga,et al.  Implicit formulation of material point method for analysis of incompressible materials , 2017 .

[40]  James M. Raymo Postdoctoral Fellow , 2009 .

[41]  E. A. de Souza Neto,et al.  Computational methods for plasticity , 2008 .

[42]  L. Prandtl,et al.  Hauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden , 1921 .