Moving object detection in the presence of dynamic backgrounds using intensity and textural features

Moving object detection in the presence of dynamic backgrounds remains a challenging problem in video surveillance. Earlier work established that the background subtraction technique based on a covariance matrix descriptor is effective and robust for dynamic backgrounds. The work proposed herein extends this concept further, using the covariance-matrix descriptor derived from local textural properties, instead of directly computing from the local image features. The proposed approach models each pixel with a covariance matrix and a mean feature vector and the model is dynamically updated. We made extensive studies with the proposed technique to demonstrate the effectiveness of statistics on local textural properties.

[1]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[2]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[5]  Touradj Ebrahimi,et al.  Video object extraction based on adaptive background and statistical change detection , 2000, IS&T/SPIE Electronic Imaging.

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  Heinrich Niemann,et al.  The systematic design and analysis cycle of a vision system: a case study in video surveillance , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[9]  Hongxun Yao,et al.  Local Spatial Co-occurrence for Background Subtraction via Adaptive Binned Kernel Estimation , 2009, ACCV.

[10]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[11]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[12]  Mark E Hallenbeck,et al.  Extracting Roadway Background Image , 2006 .

[13]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[14]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[15]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[16]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[17]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[18]  Hongxun zhang,et al.  Fusing Color and Texture Features for Background Model , 2006, FSKD.

[19]  Yi-Ping Hung,et al.  Efficient hierarchical method for background subtraction , 2007, Pattern Recognit..

[20]  Mingjun Wu,et al.  Spatio-temporal context for codebook-based dynamic background subtraction , 2010 .

[21]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[22]  Wen Gao,et al.  A covariance-based method for dynamic background subtraction , 2008, 2008 19th International Conference on Pattern Recognition.

[23]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[24]  W. Förstner,et al.  A Metric for Covariance Matrices , 2003 .

[25]  Shengping Zhang,et al.  Dynamic background modeling and subtraction using spatio-temporal local binary patterns , 2008, 2008 15th IEEE International Conference on Image Processing.

[26]  Max Mignotte,et al.  Statistical background subtraction using spatial cues , 2007, IEEE Transactions on Circuits and Systems for Video Technology.