A short study on recently developed tandem solar cells

[1]  S. Pandey,et al.  Device Modeling and Optimization for an Efficient Two-Terminal Perovskite Tandem Solar Cell , 2022, Journal of Electronic Materials.

[2]  Aditi Thakur,et al.  Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite n-i-p solar cell , 2022, Materials Today: Proceedings.

[3]  Divya Bhutani,et al.  Double lead-free perovskite solar cell for 19.9% conversion efficiency: A SCAPS-1D based simulation study , 2022, Materials Today: Proceedings.

[4]  U. Paetzold,et al.  Wide Bandgap Perovskite Photovoltaic Cells for Stray Light Recycling in a System Emitting Broadband Polarized Light , 2022, Advanced Energy Materials.

[5]  R. Pandey,et al.  Investigating the Power Conversion Efficiency at 16.5% of CIGS Solar Cell Through Device Simulations , 2022, ECS Transactions.

[6]  Jaya Madan,et al.  Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations , 2021, RSC advances.

[7]  Jaya Madan,et al.  Numerical simulations of 22% efficient all-perovskite tandem solar cell utilizing lead-free and low lead content halide perovskites , 2021, Journal of Micromechanics and Microengineering.

[8]  Thomas G. Allen,et al.  Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities , 2021, Progress in Photovoltaics: Research and Applications.

[9]  Jaya Madan,et al.  Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications , 2021, Scientific Reports.

[10]  A. M. Saleque,et al.  Improved Nanophotonic Front Contact Design for High‐Performance Perovskite Single‐Junction and Perovskite/Perovskite Tandem Solar Cells , 2021, Solar RRL.

[11]  M. Sanghadasa,et al.  28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell , 2021, Nano Energy.

[12]  Sangeeta Singh,et al.  Computational Modelling of Two Terminal CIGS/Perovskite Tandem Solar Cells with Power Conversion Efficiency of 23.1 % , 2021 .

[13]  A. Orouji,et al.  Modeling of GaAsxP1-x/CIGS tandem solar cells under stress conditions , 2021 .

[14]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[15]  Jaya Madan,et al.  Design and Simulation of a‐Si:H/PbS Colloidal Quantum Dots Monolithic Tandem Solar Cell for 12% Efficiency , 2020, physica status solidi (a).

[16]  Tilak Thakur,et al.  Modified Cascaded H-bridge Multilevel Inverter for Hybrid Renewable Energy Applications , 2020, IETE Journal of Research.

[17]  Sangeeta Singh,et al.  Numerical modeling of planar lead free perovskite solar cell using tungsten disulfide (WS2) as an electron transport layer and Cu2O as a hole transport layer , 2020 .

[18]  L. Korte,et al.  Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency , 2020, Advanced Energy Materials.

[19]  A. Carlo,et al.  Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26% , 2020, Joule.

[20]  Zhengshan J. Yu,et al.  Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells , 2020, Joule.

[21]  Thomas G. Allen,et al.  Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon , 2020, Science.

[22]  Kareem A. Zaghloul,et al.  Replay of cortical spiking sequences during human memory retrieval , 2020, Science.

[23]  B. Bouanani,et al.  Band gap and thickness optimization for improvement of CIGS/CIGS tandem solar cells using Silvaco software , 2020 .

[24]  K. Catchpole,et al.  Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency , 2019, Advanced Energy Materials.

[25]  Zhengxin Liu,et al.  27%‐Efficiency Four‐Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh , 2019, Advanced Functional Materials.

[26]  Xun Xiao,et al.  Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells , 2019, Nature Communications.

[27]  G. Garcia‐Belmonte,et al.  One-step methylammonium lead bromide films: Effect of annealing treatment , 2019, Journal of Molecular Structure.

[28]  A. Orouji,et al.  Designing of AlxGa1-xAs/CIGS tandem solar cell by analytical model , 2019, Solar Energy.

[29]  Longhui Zeng,et al.  Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management , 2019, Nano-Micro Letters.

[30]  Inho Kim,et al.  Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells , 2019, Nano Energy.

[31]  J. H. Park,et al.  A Three-Terminal Monolithic Perovskite/Si Tandem Solar Cell Characterization Platform , 2019, Joule.

[32]  Y. Qi,et al.  Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation , 2019, Nature Communications.

[33]  Yang Yang,et al.  High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells , 2018, Science.

[34]  Zhengshan J. Yu,et al.  Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells , 2018, ACS Energy Letters.

[35]  F. Dimroth,et al.  III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration , 2018 .

[36]  Xudong Xiao,et al.  Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity , 2018 .

[37]  S. Hayase,et al.  Direct observation of dramatically enhanced hole formation in a perovskite-solar-cell material spiro-OMeTAD by Li-TFSI doping , 2017 .

[38]  Henry J. Snaith,et al.  A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films , 2017 .

[39]  O. Gunawan,et al.  A road towards 25% efficiency and beyond: perovskite tandem solar cells , 2016 .

[40]  Y. Hao,et al.  Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement , 2016 .

[41]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[42]  Paul Heremans,et al.  Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics , 2016 .

[43]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[44]  Yu Tian,et al.  Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. , 2016, ACS nano.

[45]  Zaifang Li,et al.  A two-terminal perovskite/perovskite tandem solar cell , 2016 .

[46]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[47]  Q. Gong,et al.  Morphology control of the perovskite films for efficient solar cells. , 2015, Dalton transactions.

[48]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[49]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[50]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[51]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[52]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[53]  D. C. Law,et al.  Solar cell generations over 40% efficiency , 2011 .

[54]  A. Tiwari,et al.  High mobility transparent conducting oxides for thin film solar cells , 2010 .

[55]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[56]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[57]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[58]  C. Ferekides,et al.  II–VI compounds as the top absorbers in tandem solar cell structures , 2005 .

[59]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[60]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[61]  Sarah R. Kurtz,et al.  A 27.3 % efficient Ga0.5 In0.5 P/GaAs tandem solar cell , 1990 .

[62]  A. M. Saleque,et al.  Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30% , 2021 .

[63]  Frank Feldmann,et al.  The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells , 2017 .

[64]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .