EZFF: Python library for multi-objective parameterization and uncertainty quantification of interatomic forcefields for molecular dynamics

[1]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[2]  Xiaowang W. Zhou,et al.  Uncertainty Quantification and Reduction of Molecular Dynamics Models , 2017 .

[3]  A. Thran,et al.  Metal Diffusion in Polymers and on Polymer Surfaces , 2005 .

[4]  Robert J Deeth,et al.  A Multi-Objective Approach to Force Field Optimization: Structures and Spin State Energetics of d(6) Fe(II) Complexes. , 2012, Journal of chemical theory and computation.

[5]  Lihua Chen,et al.  Charge injection barriers at metal/polyethylene interfaces , 2015, Journal of Materials Science.

[6]  Ankit Mishra,et al.  Multiobjective genetic training and uncertainty quantification of reactive force fields , 2018, npj Computational Materials.

[7]  Ying Li,et al.  Scalable Reactive Molecular Dynamics Simulations for Computational Synthesis , 2019, Computing in Science & Engineering.

[8]  P. Brommer,et al.  Effective potentials for quasicrystals from ab-initio data , 2006, 0704.0163.

[9]  W. Goddard,et al.  General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide. , 2014, Journal of chemical theory and computation.

[10]  Egbert Zojer,et al.  The interface energetics of self-assembled monolayers on metals. , 2008, Accounts of chemical research.

[11]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[12]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[13]  Sungwook Hong,et al.  Atomistic-Scale Analysis of Carbon Coating and Its Effect on the Oxidation of Aluminum Nanoparticles by ReaxFF-Molecular Dynamics Simulations , 2016 .

[14]  P. Brommer,et al.  Potfit: effective potentials from ab initio data , 2007, 0704.0185.

[15]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Adri C. T. van Duin,et al.  Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation , 1994 .

[17]  R. Kosloff,et al.  Effects of Nanoscale Heterogeneities on the Reactivity of Shocked Erythritol Tetranitrate , 2016 .

[18]  Rajiv K. Kalia,et al.  A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations , 2008, Comput. Phys. Commun..

[19]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. , 2012, The Journal of chemical physics.

[20]  R. Opila,et al.  Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices , 2008 .

[21]  Yehuda Zeiri,et al.  Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields. , 2018, Journal of chemical theory and computation.

[22]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[23]  J. Roth,et al.  Classical interaction potentials for diverse materials from ab initio data: a review of potfit , 2014, 1411.5934.

[24]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[25]  P. Brommer,et al.  Uncertainty quantification for classical effective potentials: an extension to potfit , 2018, Modelling and Simulation in Materials Science and Engineering.

[26]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[27]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[28]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[29]  Shogo Fukushima,et al.  QXMD: An open-source program for nonadiabatic quantum molecular dynamics , 2019, SoftwareX.

[30]  Bernd Hartke,et al.  Global optimization of parameters in the reactive force field ReaxFF for SiOH , 2013, J. Comput. Chem..

[31]  K. S. Brown,et al.  Bayesian ensemble approach to error estimation of interatomic potentials. , 2004, Physical review letters.

[32]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[33]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[34]  Alexander P. Moore,et al.  Understanding the uncertainty of interatomic potentials’ parameters and formalism , 2017 .

[35]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[36]  R. Kosloff,et al.  Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry , 2016 .

[37]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[38]  Benoît Roux,et al.  AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. , 2013, Journal of chemical theory and computation.

[39]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[40]  Devendra Gupta,et al.  Diffusion Processes in Advanced Technological Materials , 2004 .

[41]  Junmei Wang,et al.  Automatic parameterization of force field by systematic search and genetic algorithms , 2001, J. Comput. Chem..

[42]  W. R. Salaneck,et al.  The chemical and electronic structure of the interface between aluminum and conjugated polymers , 1994 .

[43]  Tzu-Ray Shan,et al.  Charge-optimized many-body potential for the hafnium/hafnium oxide system , 2010 .

[44]  Betsy M Rice,et al.  Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES). Part 1: ReaxFF models for cyclotrimethylene trinitramine (RDX) and 1,1-diamino-2,2-dinitroethene (FOX-7). , 2015, Journal of chemical theory and computation.

[45]  Pascal Pernot,et al.  Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation. , 2011, The Journal of chemical physics.