Transgenic overexpression of furin increases epileptic susceptibility

[1]  A. Klein-Szanto,et al.  Correction: Inhibition of Furin-mediated Processing Results in Suppression of Astrocytoma Cell Growth and Invasiveness , 2019, Clinical Cancer Research.

[2]  Zhen Yan,et al.  Furin promotes dendritic morphogenesis and learning and memory in transgenic mice , 2018, Cellular and Molecular Life Sciences.

[3]  B. Han,et al.  Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage , 2017, Front. Cell. Neurosci..

[4]  P. Jaaks,et al.  The proprotein convertase furin in tumour progression , 2017, International journal of cancer.

[5]  Yida Hu,et al.  Chronic metformin treatment facilitates seizure termination. , 2017, Biochemical and biophysical research communications.

[6]  Xue-feng Wang,et al.  Lentiviral Vector-Induced Overexpression of RGMa in the Hippocampus Suppresses Seizures and Mossy Fiber Sprouting , 2017, Molecular Neurobiology.

[7]  C. Duarte,et al.  Role of GABAAR trafficking in the plasticity of inhibitory synapses , 2016, Journal of neurochemistry.

[8]  F. Xiao,et al.  Association of Microtubule Dynamics with Chronic Epilepsy , 2016, Molecular Neurobiology.

[9]  J. Li,et al.  The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity , 2016, Expert Reviews in Molecular Medicine.

[10]  Marco Fuenzalida,et al.  Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain , 2016, Neural plasticity.

[11]  D. K. Williams,et al.  Pilocarpine-induced status epilepticus in mice: A comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale , 2015, Epilepsy Research.

[12]  J. Li,et al.  Dock3 Participate in Epileptogenesis Through rac1 Pathway in Animal Models , 2015, Molecular Neurobiology.

[13]  Takashi Katsu,et al.  Targeting LDH enzymes with a stiripentol analog to treat epilepsy , 2015, Science.

[14]  Yan Shen,et al.  Notch Signaling Activation Promotes Seizure Activity in Temporal Lobe Epilepsy , 2014, Molecular Neurobiology.

[15]  Xuelin Huang,et al.  An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. , 2013, Biostatistics, bioinformatics and biomathematics.

[16]  A. Roebroek,et al.  LRP1 is critical for the surface distribution and internalization of the NR2B NMDA receptor subtype , 2013, Molecular Neurodegeneration.

[17]  Pablo M. Casillas-Espinosa,et al.  Regulators of synaptic transmission: Roles in the pathogenesis and treatment of epilepsy , 2012, Epilepsia.

[18]  R. Coveñas,et al.  Classical neurotransmitters and neuropeptides involved in generalized epilepsy: a focus on antiepileptic drugs. , 2011, Current medicinal chemistry.

[19]  Josemir W Sander,et al.  Standards for epidemiologic studies and surveillance of epilepsy , 2011, Epilepsia.

[20]  H. Kim,et al.  Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release , 2011, PAIN®.

[21]  A. Ogura,et al.  Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival , 2009, Molecular Brain.

[22]  M. Götz,et al.  Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior , 2008, Proceedings of the National Academy of Sciences.

[23]  Werner Sieghart,et al.  International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update , 2008, Pharmacological Reviews.

[24]  B. Luikart,et al.  TrkB Regulates Hippocampal Neurogenesis and Governs Sensitivity to Antidepressive Treatment , 2008, Neuron.

[25]  J. Fritschy,et al.  Epilepsy, E/I Balance and GABAA Receptor Plasticity , 2008, Frontiers in molecular neuroscience.

[26]  I. Módy,et al.  Activation of GABAA Receptors: Views from Outside the Synaptic Cleft , 2007, Neuron.

[27]  J. French,et al.  Refractory Epilepsy: Clinical Overview , 2007, Epilepsia.

[28]  N. Seidah,et al.  Proprotein convertases: lessons from knockouts , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  Houman Khosravani,et al.  Increased High‐frequency Oscillations Precede in vitro Low‐Mg2+ Seizures , 2005, Epilepsia.

[30]  P. Nguyen,et al.  Phenylethylidenehydrazine, a novel GABA-transaminase inhibitor, reduces epileptiform activity in rat hippocampal slices , 2004, Neuroscience.

[31]  S. Moss,et al.  Molecular Brain-Derived Neurotrophic Factor Modulates Fast Synaptic Inhibition by Regulating GABAA Receptor Phosphorylation , Activity , and Cell-Surface Stability , 2004 .

[32]  D. Kullmann,et al.  GABA uptake regulates cortical excitability via cell type–specific tonic inhibition , 2003, Nature Neuroscience.

[33]  F. Seil TrkB receptor signaling and activity-dependent inhibitory synaptogenesis. , 2003, Histology and histopathology.

[34]  U. Heinemann,et al.  Nitric Oxide Modulates Low-Mg2+-Induced Epileptiform Activity in Rat Hippocampal–Entorhinal Cortex Slices , 2002, Neurobiology of Disease.

[35]  G. Thomas,et al.  Furin at the cutting edge: From protein traffic to embryogenesis and disease , 2002, Nature Reviews Molecular Cell Biology.

[36]  S. Spencer Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment , 2002, Epilepsia.

[37]  A. Granholm,et al.  Alzheimer's disease and Down's syndrome: roles of APP, trophic factors and ACh , 2002, Trends in Neurosciences.

[38]  Urs Gerber,et al.  β‐Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro , 2002 .

[39]  Barbara L. Hempstead,et al.  Regulation of Cell Survival by Secreted Proneurotrophins , 2001, Science.

[40]  Istvan Mody,et al.  Distinguishing Between GABAA Receptors Responsible for Tonic and Phasic Conductances , 2001, Neurochemical Research.

[41]  Jerome Engel,et al.  A Proposed Diagnostic Scheme for People with Epileptic Seizures and with Epilepsy: Report of the ILAE Task Force on Classification and Terminology , 2001, Epilepsia.

[42]  J. Benson,et al.  BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression , 2001, The European journal of neuroscience.

[43]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[44]  D. Krysan,et al.  Quantitative Characterization of Furin Specificity , 1999, The Journal of Biological Chemistry.

[45]  Hitoshi Takahashi,et al.  Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y , 1999, Brain Research.

[46]  A. Israël,et al.  The Notch1 receptor is cleaved constitutively by a furin-like convertase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Elisabetsky,et al.  A neuropharmacological analysis of PTZ-induced kindling in mice. , 1998, General pharmacology.

[48]  J. Church,et al.  The anticonvulsant actions of σ receptor ligands in the Mg2+‐free model of epileptiform activity in rat hippocampal slices , 1998 .

[49]  S. O’Rahilly,et al.  Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene , 1997, Nature Genetics.

[50]  M Chrétien,et al.  Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. , 1996, The Biochemical journal.

[51]  N. Seidah,et al.  Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases , 1996, FEBS letters.

[52]  S. Sombati,et al.  Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. , 1995, Journal of neurophysiology.

[53]  Xue-feng Wang,et al.  Erratum to: Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons , 2015, Molecular Neurobiology.

[54]  Guo-Jun Chen,et al.  Neuroligin-1 Knockdown Suppresses Seizure Activity by Regulating Neuronal Hyperexcitability , 2014, Molecular Neurobiology.

[55]  J. Li,et al.  Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons , 2014, Molecular Neurobiology.

[56]  M. Heine Surface traffic in synaptic membranes. , 2012, Advances in experimental medicine and biology.

[57]  Xiaoran Wang,et al.  Conditional downregulation of brain- derived neurotrophic factor and tyrosine kinase receptor B blocks epileptogenesis in the human temporal lobe epilepsy hippocampus. , 2010, Neurology India.

[58]  Urs Gerber,et al.  Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. , 2002, The Journal of physiology.

[59]  J. Church,et al.  The anticonvulsant actions of sigma receptor ligands in the Mg2+-free model of epileptiform activity in rat hippocampal slices. , 1998, British journal of pharmacology.

[60]  N. Seidah,et al.  Implications of the subtilisin/kexin-like precursor convertases in the development and function of nervous tissues. , 1996, Acta neurobiologiae experimentalis.

[61]  M. Scerrati,et al.  Electrocerebral and behavioural analysis of systemic kainic acid-induced epilepsy in the rat. , 1986, Drugs under experimental and clinical research.