Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs

Abstract Building on a result by W. Rump, we show how to exploit the right-cyclic law ( x y ) ( x z ) = ( y x ) ( y z ) in order to investigate the structure groups and monoids attached with (involutive nondegenerate) set-theoretic solutions of the Yang–Baxter equation. We develop a sort of right-cyclic calculus, and use it to obtain short proofs for the existence both of the Garside structure and of the I-structure of such groups. We describe finite quotients that play for the considered groups the role that Coxeter groups play for Artin–Tits groups.

[1]  Monoids of IG-type and maximal orders , 2006, math/0601546.

[2]  Shahn Majid,et al.  Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups , 2015, Advances in Mathematics.

[3]  Wolfgang Rump,et al.  A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .

[4]  Wolfgang Rump,et al.  Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .

[5]  Roger Fenn,et al.  RACKS AND LINKS IN CODIMENSION TWO , 1992 .

[6]  S. M. Gersten,et al.  THE OPTIMAL ISOPERIMETRIC INEQUALITY FOR TORUS BUNDLES OVER THE CIRCLE , 1996 .

[7]  Patrick Dehornoy Complete positive group presentations , 2001 .

[8]  W. Rump Generalized radical rings, unknotted biquandles, and quantum groups , 2007 .

[9]  Wolfgang Rump,et al.  Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .

[10]  Patrick Dehornoy,et al.  Foundations of Garside theory (EMS Tracts in Mathematics 22) , 2015 .

[11]  A. Clifford,et al.  The algebraic theory of semigroups , 1964 .

[12]  Semigroups of I-type , 2003, math/0308071.

[13]  Fabienne Chouraqui,et al.  Garside Groups and Yang–Baxter Equation , 2009, 0912.4827.

[14]  J. Michel,et al.  Garside and locally Garside categories , 2006, math/0612652.

[15]  Patrick Dehornoy Groupes de Garside , 2001 .

[16]  Travis Schedler,et al.  On set-theoretical solutions of the quantum Yang-Baxter equation , 1997 .

[17]  Noetherian Semigroup Algebras , 2006 .

[18]  Eric Jespers,et al.  Involutive Yang-Baxter groups , 2008, 0803.4054.

[19]  T. Gateva-Ivanova Garside Structures on Monoids with Quadratic Square-Free Relations , 2009, 0909.4709.

[20]  Patrick Dehornoy,et al.  Foundations of Garside Theory , 2013, 1309.0796.

[21]  J. M. Howie THE ALGEBRAIC THEORY OF SEMIGROUPS (VOL.11) , 1969 .

[22]  T. Gateva-Ivanova,et al.  Semigroups ofI-Type , 1998 .

[23]  Patrick Dehornoy,et al.  Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .

[24]  L. Kauffman,et al.  Biquandles and virtual links , 2004 .

[25]  Matched pairs approach to set theoretic solutions of the Yang–Baxter equation , 2005, math/0507394.

[26]  E. Jespers,et al.  Monoids and Groups of I-Type , 2005 .

[27]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[28]  R. Fenn Racks and Links in Codimension 2 Introduction Racks and Links in Codimension Two Racks and Links in Codimension 2 , 2011 .

[29]  Michio Jimbo,et al.  INTRODUCTION TO THE YANG-BAXTER EQUATION , 1989 .

[30]  F. Cedó,et al.  Braces and the Yang–Baxter Equation , 2012, 1205.3587.

[31]  Patrick Dehornoy,et al.  Garside families and Garside germs , 2012, 1208.3362.

[32]  Finite quotients of groups of I-type , 2013, 1301.3707.