Transposable Element Misregulation Is Linked to the Divergence between Parental piRNA Pathways in Drosophila Hybrids

Abstract Interspecific hybridization is a genomic stress condition that leads to the activation of transposable elements (TEs) in both animals and plants. In hybrids between Drosophila buzzatii and Drosophila koepferae, mobilization of at least 28 TEs has been described. However, the molecular mechanisms underlying this TE release remain poorly understood. To give insight on the causes of this TE activation, we performed a TE transcriptomic analysis in ovaries (notorious for playing a major role in TE silencing) of parental species and their F1 and backcrossed (BC) hybrids. We find that 15.2% and 10.6% of the expressed TEs are deregulated in F1 and BC1 ovaries, respectively, with a bias toward overexpression in both cases. Although differences between parental piRNA (Piwi-interacting RNA) populations explain only partially these results, we demonstrate that piRNA pathway proteins have divergent sequences and are differentially expressed between parental species. Thus, a functional divergence of the piRNA pathway between parental species, together with some differences between their piRNA pools, might be at the origin of hybrid instabilities and ultimately cause TE misregulation in ovaries. These analyses were complemented with the study of F1 testes, where TEs tend to be less expressed than in D. buzzatii. This can be explained by an increase in piRNA production, which probably acts as a defence mechanism against TE instability in the male germline. Hence, we describe a differential impact of interspecific hybridization in testes and ovaries, which reveals that TE expression and regulation are sex-biased.

[1]  A. Flecker,et al.  Riparian plant litter quality increases with latitude , 2017, Scientific Reports.

[2]  C. Vieira,et al.  Identification of misexpressed genetic elements in hybrids between Drosophila-related species , 2017, Scientific Reports.

[3]  Laurent Modolo,et al.  TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes , 2016, Nucleic acids research.

[4]  A. Ruíz,et al.  Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes , 2016, BMC Genomics.

[5]  G. Hannon,et al.  One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing , 2016, Trends in biochemical sciences.

[6]  C. Vieira,et al.  Drosophila Females Undergo Genome Expansion after Interspecific Hybridization , 2016, Genome biology and evolution.

[7]  Valèria Romero-Soriano,et al.  Expression of the Retrotransposon Helena Reveals a Complex Pattern of TE Deregulation in Drosophila Hybrids , 2016, PloS one.

[8]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[9]  C. Antoniewski,et al.  tRNA processing defects induce replication stress and Chk2‐dependent disruption of piRNA transcription , 2015, The EMBO journal.

[10]  K. Senti,et al.  Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery , 2015, Genes & development.

[11]  G. Hannon,et al.  Panoramix enforces piRNA-dependent cotranscriptional silencing , 2015, Science.

[12]  Bo W. Han,et al.  Slicing and Binding by Ago3 or Aub Trigger Piwi-Bound piRNA Production by Distinct Mechanisms. , 2015, Molecular cell.

[13]  Piero Carninci,et al.  Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. , 2015, Molecular cell.

[14]  D. Patel,et al.  Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. , 2015, Molecular cell.

[15]  M. Siomi,et al.  PIWI-Interacting RNA: Its Biogenesis and Functions. , 2015, Annual review of biochemistry.

[16]  Zhiping Weng,et al.  piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production , 2015, Science.

[17]  Julius Brennecke,et al.  piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis , 2015, Science.

[18]  C. Brun,et al.  MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells , 2015, PLoS genetics.

[19]  Laurent Modolo,et al.  UrQt: an efficient software for the Unsupervised Quality trimming of NGS data , 2015, BMC Bioinformatics.

[20]  C. Parisod,et al.  Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation , 2015, Proceedings of the Royal Society B: Biological Sciences.

[21]  A. Mercurio,et al.  A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells , 2015, Genes & development.

[22]  Laurent Modolo,et al.  De Novo Assembly and Annotation of the Asian Tiger Mosquito (Aedes albopictus) Repeatome with dnaPipeTE from Raw Genomic Reads and Comparative Analysis with the Yellow Fever Mosquito (Aedes aegypti) , 2015, Genome biology and evolution.

[23]  M. P. Guerreiro,et al.  Changes of Osvaldo expression patterns in germline of male hybrids between the species Drosophila buzzatii and Drosophila koepferae , 2015, Molecular Genetics and Genomics.

[24]  D. Moazed,et al.  RNA-mediated epigenetic regulation of gene expression , 2015, Nature Reviews Genetics.

[25]  Alessandro Vullo,et al.  Ensembl 2015 , 2014, Nucleic Acids Res..

[26]  M. Siomi,et al.  Krimper Enforces an Antis ense Bias on piRNA Pools by Binding AGO 3 in the Drosophila Germline , 2015 .

[27]  T. Eickbush,et al.  Integration, Regulation, and Long-Term Stability of R2 Retrotransposons. , 2015, Microbiology spectrum.

[28]  A. Clark,et al.  Genomics of Ecological Adaptation in Cactophilic Drosophila , 2014, Genome biology and evolution.

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  R. Pillai,et al.  Fly piRNA biogenesis: tap dancing with Tej , 2014, BMC Biology.

[31]  L. Rieseberg,et al.  Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  M. P. Guerreiro Interspecific hybridization as a genomic stressor inducing mobilization of transposable elements in Drosophila , 2014, Mobile genetic elements.

[33]  C. Vieira,et al.  Specific Activation of an I-Like Element in Drosophila Interspecific Hybrids , 2014, Genome biology and evolution.

[34]  Fabio Mohn,et al.  The Rhino-Deadlock-Cutoff Complex Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in Drosophila , 2014, Cell.

[35]  C. Brun,et al.  A user-friendly chromatographic method to purify small regulatory RNAs. , 2014, Methods.

[36]  L. Bernatchez,et al.  RNA-seq reveals transcriptomic shock involving transposable elements reactivation in hybrids of young lake whitefish species. , 2014, Molecular biology and evolution.

[37]  S. Desset,et al.  Transcriptional properties and splicing of the flamenco piRNA cluster , 2014, EMBO reports.

[38]  R. Martienssen,et al.  miRNAs trigger widespread epigenetically-activated siRNAs from transposons in Arabidopsis , 2014, Nature.

[39]  C. Vieira,et al.  Variable expression levels detected in the Drosophila effectors of piRNA biogenesis. , 2014, Gene.

[40]  C. Vieira,et al.  A Genome-Wide Survey of Genetic Instability by Transposition in Drosophila Hybrids , 2014, PloS one.

[41]  Franck Picard,et al.  A New Genome-Wide Method to Track Horizontally Transferred Sequences: Application to Drosophila , 2014, Genome biology and evolution.

[42]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[43]  Christophe Antoniewski,et al.  Computing siRNA and piRNA overlap signatures. , 2014, Methods in molecular biology.

[44]  D. Halligan,et al.  Estimation of the Spontaneous Mutation Rate per Nucleotide Site in a Drosophila melanogaster Full-Sib Family , 2013, Genetics.

[45]  A. Marchais,et al.  Reconstructing de novo silencing of an active plant retrotransposon , 2013, Nature Genetics.

[46]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[47]  Dominik Handler,et al.  The Genetic Makeup of the Drosophila piRNA Pathway , 2013, Molecular cell.

[48]  G. Hannon,et al.  A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. , 2013, Molecular cell.

[49]  A. Wong,et al.  RECURRENT AND RECENT SELECTIVE SWEEPS IN THE piRNA PATHWAY , 2013, Evolution; international journal of organic evolution.

[50]  G. Hannon,et al.  Multiple roles for Piwi in silencing Drosophila transposons. , 2013, Genes & development.

[51]  D. Barbash,et al.  Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants , 2012, PLoS biology.

[52]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[53]  C. Brun,et al.  piRNA-mediated transgenerational inheritance of an acquired trait , 2012, Genome research.

[54]  R. DeSalle,et al.  Monophyly, Divergence Times, and Evolution of Host Plant Use Inferred from a Revised Phylogeny of the Drosophila Repleta Species Group , 2022 .

[55]  M. P. Guerreiro,et al.  What makes transposable elements move in the Drosophila genome? , 2011, Heredity.

[56]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[57]  M. Snyder,et al.  A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster , 2011, PLoS genetics.

[58]  Z. Weng,et al.  Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. , 2011, Molecular cell.

[59]  R. Sachidanandam,et al.  A systematic analysis of Drosophila TUDOR domain‐containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors , 2011, The EMBO journal.

[60]  R. Lehmann,et al.  piRNA Production Requires Heterochromatin Formation in Drosophila , 2011, Current Biology.

[61]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[62]  E. Bucher,et al.  An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress , 2011, Nature.

[63]  M. P. Guerreiro,et al.  Adaptation of the AFLP technique as a new tool to detect genetic instability and transposition in interspecific hybrids. , 2011, BioTechniques.

[64]  Emmanuelle Lerat,et al.  Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. , 2011, Gene.

[65]  Jacob D. Jaffe,et al.  Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. , 2011, Genome research.

[66]  M. Ungerer,et al.  Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons , 2011, Genome biology and evolution.

[67]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[68]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[69]  K. Senti,et al.  The piRNA pathway: a fly's perspective on the guardian of the genome. , 2010, Trends in genetics : TIG.

[70]  T. Mituyama,et al.  Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. , 2010, RNA.

[71]  Kuniaki Saito,et al.  Small RNA-mediated quiescence of transposable elements in animals. , 2010, Developmental cell.

[72]  E. Hasson,et al.  Intra‐ and interspecific divergence in the nuclear sequences of the clock gene period in species of the Drosophila buzzatii cluster , 2010 .

[73]  M. Siomi,et al.  piRNA-mediated silencing in Drosophila germlines. , 2010, Seminars in cell & developmental biology.

[74]  D. Barbash Anecdotal , Historical and Critical Commentaries on Genetics Ninety Years of Drosophila melanogaster Hybrids , 2010 .

[75]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[76]  Bao Liu,et al.  Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia , 2010, BMC Plant Biology.

[77]  Jörg D. Becker,et al.  Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen , 2009, Cell.

[78]  P. Michalak Epigenetic, transposon and small RNA determinants of hybrid dysfunctions , 2009, Heredity.

[79]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[80]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[81]  R. Sachidanandam,et al.  An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing , 2008, Science.

[82]  F. Jiggins,et al.  The evolution of RNAi as a defence against viruses and transposable elements , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  C. Brun,et al.  piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline , 2008, Proceedings of the National Academy of Sciences.

[84]  Martin Vingron,et al.  Ontologizer 2.0 - a multifunctional tool for GO term enrichment analysis and data exploration , 2008, Bioinform..

[85]  Z. Weng,et al.  Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells , 2008, Science.

[86]  A. Cutter Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. , 2008, Molecular biology and evolution.

[87]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[88]  J. C. Yasuhara,et al.  Molecular Landscape of Modified Histones in Drosophila Heterochromatic Genes and Euchromatin-Heterochromatin Transition Zones , 2007, PLoS genetics.

[89]  W. Theurkauf,et al.  Biogenesis and germline functions of piRNAs , 2007, Development.

[90]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[91]  R. O’Neill,et al.  Genomic Instability Within Centromeres of Interspecific Marsupial Hybrids , 2007, Genetics.

[92]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[93]  Kuniaki Saito,et al.  Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. , 2007, RNA.

[94]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[95]  T. Tuschl,et al.  Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline , 2007, Nucleic acids research.

[96]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[97]  Kuniaki Saito,et al.  Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. , 2007, Genes & development.

[98]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[99]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[100]  P. Deininger,et al.  Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. , 2007, Mutation research.

[101]  M. Ungerer,et al.  Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation , 2006, Current Biology.

[102]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[103]  A. Fontdevila Hybrid genome evolution by transposition , 2005, Cytogenetic and Genome Research.

[104]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..

[105]  D. Lachaise,et al.  How Two Afrotropical Endemics Made Two Cosmopolitan Human Commensals: the Drosophila Melanogaster–D. Simulans Palaeogeographic Riddle , 2004, Genetica.

[106]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[107]  M. Aguadé,et al.  Comparative molecular population genetics of the Xdh locus in the cactophilic sibling species Drosophila buzzatii and D. koepferae. , 2003, Molecular biology and evolution.

[108]  W. Lathe,et al.  Evolution of R1 and R2 in the rDNA units of the genus Drosophila , 2004, Genetica.

[109]  Y. Ilyin,et al.  Transposition of mobile genetic elements in interspecific hybrids of Drosophila , 2004, Chromosoma.

[110]  Mauro Santos,et al.  The evolutionary history of Drosophila buzzatii. XXXV. Inversion polymorphism and nucleotide variability in different regions of the second chromosome. , 2003, Molecular biology and evolution.

[111]  E. Hasson,et al.  Transpecific polymorphisms in an inversion linked esterase locus in Drosophila buzzatii. , 2003, Molecular biology and evolution.

[112]  K. Kojima,et al.  Evolution of target specificity in R1 clade non-LTR retrotransposons. , 2003, Molecular biology and evolution.

[113]  C. Biémont,et al.  Tissue-specificity of 412 retrotransposon expression in Drosophila simulans and D. melanogaster , 2002, Heredity.

[114]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[115]  J. Wendel,et al.  Retrotransposon activation followed by rapid repression in introgressed rice plants. , 2000, Genome.

[116]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[117]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[118]  F. Utzet,et al.  Interspecific hybridization increases transposition rates of Osvaldo. , 1999, Molecular biology and evolution.

[119]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[120]  I. Marín,et al.  Stable Drosophila buzzatii-Drosophila koepferae hybrids. , 1998, The Journal of heredity.

[121]  R. O’Neill,et al.  Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid , 1998, Nature.

[122]  D. Petrov,et al.  High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. , 1998, Molecular biology and evolution.

[123]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[124]  A. Ruíz,et al.  REPRODUCTIVE RELATIONSHIPS AMONG TEN SPECIES OF THE DROSOPHILA REPLETA GROUP FROM SOUTH AMERICA AND THE WEST INDIES , 1993, Evolution; international journal of organic evolution.

[125]  M. G. Kidwell,et al.  Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. , 1977, Genetics.

[126]  G. Picard Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. , 1976, Genetics.