Point Cloud Skeletons via Laplacian Based Contraction

We present an algorithm for curve skeleton extraction via Laplacian-based contraction. Our algorithm can be applied to surfaces with boundaries, polygon soups, and point clouds. We develop a contraction operation that is designed to work on generalized discrete geometry data, particularly point clouds, via local Delaunay triangulation and topological thinning. Our approach is robust to noise and can handle moderate amounts of missing data, allowing skeleton-based manipulation of point clouds without explicit surface reconstruction. By avoiding explicit reconstruction, we are able to perform skeleton-driven topology repair of acquired point clouds in the presence of large amounts of missing data. In such cases, automatic surface reconstruction schemes tend to produce incorrect surface topology. We show that the curve skeletons we extract provide an intuitive and easy-to-manipulate structure for effective topology modification, leading to more faithful surface reconstruction.

[1]  Alla Sheffer,et al.  Virtual Woodwork: Making Toys from Geometric Models , 2004, Int. J. Shape Model..

[2]  M. Fatih Demirci,et al.  3D object retrieval using many-to-many matching of curve skeletons , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[3]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[4]  Daniel Cohen-Or,et al.  Consensus Skeleton for Non‐rigid Space‐time Registration , 2010, Comput. Graph. Forum.

[5]  Craig Gotsman,et al.  Articulated Object Reconstruction and Markerless Motion Capture from Depth Video , 2008, Comput. Graph. Forum.

[6]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[7]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[8]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[9]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[10]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[11]  Ralph R. Martin,et al.  Shape Deformation Using a Skeleton to Drive Simplex Transformations , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Hans-Peter Seidel,et al.  Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data , 2009, TOGS.

[13]  J. Rossignac,et al.  Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies , 2004, SM '04.

[14]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[15]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[16]  Hans-Peter Seidel,et al.  Error-guided adaptive Fourier-based surface reconstruction , 2007, Comput. Aided Des..

[17]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[18]  Gil Shklarski,et al.  Interactive topology-aware surface reconstruction , 2007, ACM Trans. Graph..

[19]  Silvia Biasotti,et al.  3D Shape Matching through Topological Structures , 2003, DGCI.

[20]  Tiow Seng Tan,et al.  Decomposing polygon meshes for interactive applications , 2001, I3D '01.

[21]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[22]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[23]  Daniel Cohen-Or,et al.  Least-squares meshes , 2004, Proceedings Shape Modeling Applications, 2004..

[24]  Christine Depraz,et al.  Harmonic skeleton for realistic character animation , 2007, SCA '07.

[25]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[26]  Shi-Min Hu,et al.  Topology Repair of Solid Models Using Skeletons , 2007, IEEE Transactions on Visualization and Computer Graphics.

[27]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[28]  Jos B. T. M. Roerdink,et al.  Efficient Surface Reconstruction using Generalized Coulomb Potentials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[29]  Ariel Shamir,et al.  On‐the‐fly Curve‐skeleton Computation for 3D Shapes , 2007, Comput. Graph. Forum.

[30]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[31]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[32]  Marco Attene,et al.  Shape understanding by contour-driven retiling , 2003, The Visual Computer.

[33]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Richard E. Parent,et al.  Automated generation of control skeletons for use in animation , 2002, The Visual Computer.

[35]  Daniel Cohen-Or,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[36]  Wan-Chun Ma,et al.  Domain connected graph: the skeleton of a closed 3D shape for animation , 2006, The Visual Computer.

[37]  Narendra Ahuja,et al.  A potential-based generalized cylinder representation , 2004, Comput. Graph..

[38]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Transactions on Visualization and Computer Graphics.

[39]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[40]  Shi-Min Hu,et al.  Editing the topology of 3D models by sketching , 2007, ACM Trans. Graph..

[41]  Tamal K. Dey,et al.  Normal and Feature Approximations from Noisy Point Clouds , 2006, FSTTCS.

[42]  Gabriella Sanniti di Baja,et al.  Curve skeletonization of surface-like objects in 3D images guided by voxel classification , 2002, Pattern Recognit. Lett..

[43]  Yusu Wang,et al.  Eurographics Symposium on Geometry Processing 2009 Approximating Gradients for Meshes and Point Clouds via Diffusion Metric , 2022 .

[44]  Hongsheng Chen,et al.  Hardware accelerated voxelization , 2000, Comput. Graph..

[45]  Cohen-OrDaniel,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008 .

[46]  Tong-Yee Lee,et al.  Curve-Skeleton Extraction Using Iterative Least Squares Optimization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[47]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[48]  Anne Verroust-Blondet,et al.  Extracting skeletal curves from 3D scattered data , 2000, The Visual Computer.

[49]  Matthias Zwicker,et al.  Range Scan Registration Using Reduced Deformable Models , 2009, Comput. Graph. Forum.

[50]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[51]  Jovan Popovic,et al.  Automatic rigging and animation of 3D characters , 2007, ACM Trans. Graph..

[52]  Hans-Peter Seidel,et al.  Automatic Conversion of Mesh Animations into Skeleton‐based Animations , 2008, Comput. Graph. Forum.

[53]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.