Oxygenation monitoring of tissue vasculature by resonance Raman spectroscopy.

Resonance Raman spectroscopy offers a mechanism for the noninvasive measurement of in vivo and in situ hemoglobin oxygen saturation (HbO(2)Sat) in living tissue. Clinically informative signals can be provided by resonance enhancement with deep violet excitation. It is notable that fluorescence does not significantly degrade the quality of the signals. During the controlled hemorrhage and resuscitation of rats, signal intensity ratios of oxy- vs. deoxyhemoglobin from sublingual mucosa correlated with co-oximetry values of blood withdrawn from a central venous catheter. The spectroscopic application described here has potential as a noninvasive method for the diagnosis of clinical shock and guidance of its therapy.