Gaussian quadrature rules with exponential weights on (−1, 1)

We study the behavior of some “truncated” Gaussian rules based on the zeros of Pollaczek-type polynomials. These formulas are stable and converge with the order of the best polynomial approximation in suitable function spaces. Moreover, we apply these results to the related Lagrange interpolation process and to prove the stability and the convergence of a Nyström method for Fredholm integral equations of the second kind. Finally, some numerical examples are shown.

[1]  P. Erdös,et al.  Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.

[2]  B. Silbermann,et al.  Numerical Analysis for Integral and Related Operator Equations , 1991 .

[3]  A. Levin,et al.  Christoffel functions and orthogonal polynomials for exponential weights on [-1,1] , 1994 .

[4]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[5]  Giuseppe Mastroianni,et al.  Lagrange Interpolation in Weighted Besov Spaces , 1999 .

[6]  Giovanni Monegato,et al.  Truncated Gauss-Laguerre quadrature rules , 2000 .

[7]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[8]  Giuseppe Mastroianni,et al.  Gaussian rules on unbounded intervals , 2003, J. Complex..

[9]  Giovanni Monegato,et al.  Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..

[10]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[11]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[12]  G. Mastroianni,et al.  Fourier Sums and Lagrange Interpolation on (0,+‚àû) and (_‚àû,+‚àû) , 2006 .

[13]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[14]  Giuseppe Mastroianni,et al.  A Lagrange-type projector on the real line , 2010, Math. Comput..

[15]  G. Mastroianni,et al.  Polynomial approximation with an exponential weight in [−1, 1] (revisiting some of Lubinsky’s results) , 2011, Acta Scientiarum Mathematicarum.

[16]  I. Notarangelo,et al.  Polynomial inequalities and embedding theorems with exponential weights on (−1,1) , 2012 .