Gaussian quadrature rules with exponential weights on (−1, 1)
暂无分享,去创建一个
Maria Carmela De Bonis | Giuseppe Mastroianni | I. Notarangelo | M. C. D. Bonis | G. Mastroianni | I. Notarangelo
[1] P. Erdös,et al. Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.
[2] B. Silbermann,et al. Numerical Analysis for Integral and Related Operator Equations , 1991 .
[3] A. Levin,et al. Christoffel functions and orthogonal polynomials for exponential weights on [-1,1] , 1994 .
[4] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[5] Giuseppe Mastroianni,et al. Lagrange Interpolation in Weighted Besov Spaces , 1999 .
[6] Giovanni Monegato,et al. Truncated Gauss-Laguerre quadrature rules , 2000 .
[7] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[8] Giuseppe Mastroianni,et al. Gaussian rules on unbounded intervals , 2003, J. Complex..
[9] Giovanni Monegato,et al. Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..
[10] Aleksandar S. Cvetković,et al. THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .
[11] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[12] G. Mastroianni,et al. Fourier Sums and Lagrange Interpolation on (0,+‚àû) and (_‚àû,+‚àû) , 2006 .
[13] G. Milovanović,et al. Interpolation Processes: Basic Theory and Applications , 2008 .
[14] Giuseppe Mastroianni,et al. A Lagrange-type projector on the real line , 2010, Math. Comput..
[15] G. Mastroianni,et al. Polynomial approximation with an exponential weight in [−1, 1] (revisiting some of Lubinsky’s results) , 2011, Acta Scientiarum Mathematicarum.
[16] I. Notarangelo,et al. Polynomial inequalities and embedding theorems with exponential weights on (−1,1) , 2012 .