On the use of linear programming for unsupervised text classification
暂无分享,去创建一个
[1] Chaitanya Swamy,et al. Correlation Clustering: maximizing agreements via semidefinite programming , 2004, SODA '04.
[2] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[3] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[4] Anna R. Karlin,et al. Spectral analysis of data , 2001, STOC '01.
[5] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[6] Alan M. Frieze,et al. High Degree Vertices and Eigenvalues in the Preferential Attachment Graph , 2005, Internet Math..
[8] Chris H. Q. Ding,et al. Spectral Relaxation for K-means Clustering , 2001, NIPS.
[9] Andrew McCallum,et al. Distributional clustering of words for text classification , 1998, SIGIR '98.
[10] Thomas Hofmann,et al. Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.
[11] Thorsten Joachims,et al. Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.
[12] Christos H. Papadimitriou,et al. On the Eigenvalue Power Law , 2002, RANDOM.
[13] Chris Ding,et al. On the Use of Singular Value Decomposition for Text Retrieval , 2000 .
[14] Nicole Immorlica,et al. Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques , 2003, Lecture Notes in Computer Science.
[15] Fan Chung Graham,et al. The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..
[16] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[17] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..
[18] Jon M. Kleinberg,et al. Using mixture models for collaborative filtering , 2004, STOC '04.
[19] Thomas Hofmann,et al. Probabilistic Latent Semantic Analysis , 1999, UAI.
[20] A. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.
[21] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[22] Eric Saund,et al. Applying the Multiple Cause Mixture Model to Text Categorization , 1996, ICML.
[23] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[24] T. Kanade,et al. Robust subspace computation using L1 norm , 2003 .
[25] Anirban Dasgupta,et al. Spectral analysis of random graphs with skewed degree distributions , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[26] Eric Saund,et al. A Multiple Cause Mixture Model for Unsupervised Learning , 1995, Neural Computation.
[27] Inderjit S. Dhillon,et al. Enhanced word clustering for hierarchical text classification , 2002, KDD.
[28] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .