Without-replacement sampling for particle methods on finite state spaces

Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.

[1]  Gerardo Rubino,et al.  Approximate Zero-Variance Importance Sampling for Static Network Reliability Estimation , 2011, IEEE Transactions on Reliability.

[2]  K. Riedel Numerical Bayesian Methods Applied to Signal Processing , 1996 .

[3]  W. G. Madow On the Theory of Systematic Sampling, III. Comparison of Centered and Random Start Systematic Sampling , 1953 .

[4]  Dirk P. Kroese,et al.  Stochastic Enumeration Method for Counting Trees , 2017 .

[5]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[6]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[7]  Arnaud Doucet,et al.  Sequentially interacting Markov chain Monte Carlo methods , 2010, 1211.2582.

[8]  Rong Chen,et al.  A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.

[9]  M. Sampford,et al.  On sampling without replacement with unequal probabilities of selection. , 1967, Biometrika.

[10]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[11]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[12]  Yee Whye Teh,et al.  Asynchronous Anytime Sequential Monte Carlo , 2014, NIPS.

[13]  F. T. Wall,et al.  New Method for the Statistical Computation of Polymer Dimensions , 1959 .

[14]  I. Olkin,et al.  Probability in the Engineering and Informational Sciences , 2013 .

[15]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[16]  P. Fearnhead,et al.  On‐line inference for hidden Markov models via particle filters , 2003 .

[17]  Ronaldo Iachan,et al.  Systematic Sampling: A Critical Review , 1982 .

[18]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[19]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[20]  M. Lomonosov On Monte Carlo Estimates in Network Reliability , 1994, Probability in the Engineering and Informational Sciences.

[21]  B. Rosén On sampling with probability proportional to size , 1997 .

[22]  N. Chopin,et al.  Sequential Quasi-Monte Carlo , 2014, 1402.4039.

[23]  J. Hammersley,et al.  Poor Man's Monte Carlo , 1954 .

[24]  D. Vats Simulation and the Monte Carlo Method, 3rd ed. , 2019, Journal of the American Statistical Association.

[25]  Nibia Aires Comparisons between conditional Poisson sampling and Pareto πps sampling designs , 2000 .

[26]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[27]  B. Rosén Asymptotic theory for order sampling , 1997 .

[28]  Muhammad Hanif,et al.  Sampling With Unequal Probabilities , 1982 .

[29]  P. McCullagh,et al.  Approximating the a-permanent , 2009 .

[30]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[31]  Tov Elperin,et al.  Estimation of network reliability using graph evolution models , 1991 .

[32]  L. Bondesson,et al.  Pareto Sampling versus Sampford and Conditional Poisson Sampling , 2006 .

[33]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[34]  H. Hartley,et al.  Sampling with Unequal Probabilities and without Replacement , 1962 .

[35]  K OrJ Numerical Bayesian methods applied to signal processing , 1996 .

[36]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[37]  W. G. Madow On the Theory of Systematic Sampling, II , 1944 .

[38]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[39]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .