Grid Harmonics Suppression Scheme for LCL-Type Grid-Connected Inverters Based on Output Admittance Revision

In this paper, the influence of grid harmonics on the output current of grid-connected inverters with an LCL filter is investigated by means of the output admittance. With the complex transfer model of the output admittance, the full-feedforward scheme of grid voltage is derived, which, however, is difficult to be implemented due to the derivative terms in the feedforward link. A detailed theoretical analysis is also presented to explain the compensation error introduced by the active damping and delays when the grid voltage proportional feedforward is adopted. Then a feedforward scheme based on the band-pass filter (BPF) is proposed to compensate the grid harmonics at the selected frequencies, and the parameters of the BPF are derived to revise the output admittance. It has also been found that with the commonly used phase-locked loop (PLL), an additional admittance matrix is introduced. The compensation effect will be degraded when the PLL with a high bandwidth is used for tracking grid phase accurately. Therefore, a modified PLL is proposed to revise the output admittance again, for suppressing the output current distortion arising from the grid harmonics, which propagate to control system through the PLL. Finally, the experimental results verify the effectiveness of the proposed scheme, where the current harmonics are effectively suppressed.

[1]  M. Liserre,et al.  Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame , 2006, IEEE Transactions on Power Electronics.

[2]  C.M. Johnson,et al.  Suppression of line voltage related distortion in current controlled grid connected inverters , 2005, IEEE Transactions on Power Electronics.

[3]  F. Blaabjerg,et al.  A digital controlled PV-inverter with grid impedance estimation for ENS detection , 2005, IEEE Transactions on Power Electronics.

[4]  Massimo Bongiorno,et al.  Input-Admittance Calculation and Shaping for Controlled Voltage-Source Converters , 2007, IEEE Transactions on Industrial Electronics.

[5]  J L Agorreta,et al.  Modeling and Control of $N$ -Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants , 2011, IEEE Transactions on Power Electronics.

[6]  Bo Wen,et al.  Influence of phase-locked loop on input admittance of three-phase voltage-source converters , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[7]  M. Liserre,et al.  A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[8]  Lennart Harnefors,et al.  Modeling of Three-Phase Dynamic Systems Using Complex Transfer Functions and Transfer Matrices , 2007, IEEE Transactions on Industrial Electronics.

[9]  Paolo Mattavelli,et al.  Digital Control in Power Electronics , 2006, Digital Control in Power Electronics.

[10]  Yun Wei Li,et al.  Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters , 2012, IEEE Transactions on Power Electronics.

[11]  G. Garcera,et al.  Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter , 2009, IEEE Transactions on Industrial Electronics.

[12]  Jian Sun,et al.  Adaptive Control of Grid-Connected Inverters Based on Online Grid Impedance Measurements , 2014, IEEE Transactions on Sustainable Energy.

[13]  Y. A-R I. Mohamed,et al.  Analysis and Active-Impedance-Based Stabilization of Voltage-Source-Rectifier Loads in Grid-Connected and Isolated Microgrid Applications , 2013, IEEE Transactions on Sustainable Energy.

[14]  Antti J. Koivo,et al.  Nonlinear predictive control with application to manipulator with flexible forearm , 1999, IEEE Trans. Ind. Electron..

[15]  Hong-Seok Song,et al.  Dual current control scheme for PWM converter under unbalanced input voltage conditions , 1999, IEEE Trans. Ind. Electron..

[16]  M. Liserre,et al.  Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters , 2013, IEEE Transactions on Power Electronics.

[17]  Frede Blaabjerg,et al.  Proportional-resonant controllers and filters for grid-connected voltage-source converters , 2006 .

[18]  Steffan Hansen,et al.  Investigation of Active Damping Approaches for PI-Based Current Control of Grid-Connected Pulse Width Modulation Converters With LCL Filters , 2010, IEEE Transactions on Industry Applications.

[19]  Yasser Abdel-Rady I. Mohamed,et al.  Modeling, Analysis, and Stabilization of Converter-Fed AC Microgrids With High Penetration of Converter-Interfaced Loads , 2012, IEEE Transactions on Smart Grid.

[20]  Xinbo Ruan,et al.  Capacitor-Current-Feedback Active Damping With Reduced Computation Delay for Improving Robustness of LCL-Type Grid-Connected Inverter , 2014, IEEE Transactions on Power Electronics.

[21]  Xiaowei Fu,et al.  Direct Grid Current Control of LCL-Filtered Grid-Connected Inverter Mitigating Grid Voltage Disturbance , 2014, IEEE Transactions on Power Electronics.

[22]  Donald Grahame Holmes,et al.  Grid current regulation of a three-phase voltage source inverter with an LCL input filter , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[23]  Marco Liserre,et al.  Grid Converters for Photovoltaic and Wind Power Systems , 2011 .

[24]  Xinbo Ruan,et al.  Full-Feedforward Schemes of Grid Voltages for a Three-Phase $LCL$-Type Grid-Connected Inverter , 2013, IEEE Transactions on Industrial Electronics.

[25]  Xinbo Ruan,et al.  Full Feedforward of Grid Voltage for Grid-Connected Inverter With LCL Filter to Suppress Current Distortion Due to Grid Voltage Harmonics , 2010, IEEE Transactions on Power Electronics.

[26]  M. Liserre,et al.  Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values , 2006, IEEE Transactions on Power Electronics.

[27]  R. Teodorescu,et al.  A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions , 2012, IEEE Transactions on Power Electronics.

[28]  Yasser Abdel-Rady I. Mohamed,et al.  Suppression of Low- and High-Frequency Instabilities and Grid-Induced Disturbances in Distributed Generation Inverters , 2011, IEEE Transactions on Power Electronics.

[29]  Frede Blaabjerg,et al.  Overview of Control and Grid Synchronization for Distributed Power Generation Systems , 2006, IEEE Transactions on Industrial Electronics.