HYDRODYNAMIC LIMIT FOR THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE

We consider the hydrodynamic limit for the VPFP system in dimension two, dealing with general initial data having finite mass, energy and entropy. The limit equation consists in a drift-diffusion equation, where the drift velocity is defined by means of the Poisson relation. Our result is twofold. In the case of repulsive (electrostatic) forces, we prove the convergence globally in time in a weak L1 setting. Considering attractive (gravitational) forces, the same result applies provided a certain scaling parameter is large enough. This is precisely the assumption which prevents the formation of Dirac masses in finite time in the limit equations, as recently shown by Dolbeault–Perthame.

[1]  F. Bouchut Smoothing Effect for the Non-linear Vlasov-Poisson-Fokker-Planck System , 1995 .

[2]  Steven Schochet,et al.  The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .

[3]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[4]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[5]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[6]  T. Goudon On boltzmann equations and fokker—planck asymptotics: Influence of grazing collisions , 1997 .

[7]  P. Degond Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .

[8]  Michael Loss,et al.  Competing symmetries, the logarithmic HLS inequality and Onofri's inequality onsn , 1992 .

[9]  François Bouchut,et al.  Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions , 1993 .

[10]  M. Rascle,et al.  Finite time blow-up in some models of chemotaxis , 1995, Journal of mathematical biology.

[11]  Takashi Suzuki,et al.  Weak Solutions to a Parabolic-Elliptic System of Chemotaxis , 2002 .

[12]  B. Perthame,et al.  Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .

[13]  Jean Dolbeault Monokinetic charged particle beams: qualitative behavior of the solutions of the cauchy problem and 2d time-periodic solutions of the vlasov-poisson system , 2000 .

[14]  Hydrodynamical limit for a drift-diffusion system modeling large-population dynamics , 2004 .

[15]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[16]  Solomon Kullback,et al.  Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.

[17]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[18]  Juan Soler,et al.  PARABOLIC LIMIT AND STABILITY OF THE VLASOV–FOKKER–PLANCK SYSTEM , 2000 .

[19]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[20]  H. Neunzert,et al.  On the Vlasov‐Fokker‐Planck equation , 1984 .

[21]  Harold Dean Victory On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems☆ , 1991 .

[22]  William Beckner,et al.  Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , 1993 .

[23]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[24]  H. Victory,et al.  On classical solutions of Vlasov-Poisson Fokker-Planck systems , 1990 .

[25]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[26]  Juan Soler,et al.  Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. , 2005 .

[27]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[28]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[29]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[30]  Pierre-Henri Chavanis,et al.  Statistical Mechanics of Two-Dimensional Vortices and Collisionless Stellar Systems , 1996 .