Nanotwin stability in alloyed copper under ambient and cryo-temperature dependent deformation states

[1]  Oliver K. Johnson,et al.  A classical equation that accounts for observations of non-Arrhenius and cryogenic grain boundary migration , 2022, npj Computational Materials.

[2]  Oliver K. Johnson,et al.  Simulated migration behavior of metastable Σ3 (11 8 5) incoherent twin grain boundaries , 2022, IOP Conference Series: Materials Science and Engineering.

[3]  S. Brinckmann,et al.  Influence of crystal orientation on twinning in austenitic stainless-steel during single micro-asperity tribology and nanoindentation , 2022, Wear.

[4]  T. Mukhopadhyay,et al.  Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point , 2022, Computational Materials Science.

[5]  Xinhua Yang,et al.  Concentration-temperature superposition principle for grain boundary migration in Ni(Cu) bicrystals , 2021 .

[6]  V. Mohles,et al.  Efficient calculation of the ECO driving force for atomistic simulations of grain boundary motion , 2020 .

[7]  J. Bair,et al.  Cryogenic Stress-Driven Grain Growth Observed via Microcompression with in situ Electron Backscatter Diffraction , 2020, JOM.

[8]  M. R. Dashtbayazi,et al.  A new method for severe plastic deformation of the copper sheets , 2018, Materials Science and Engineering: A.

[9]  R. Misra,et al.  The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel , 2018, Scientific Reports.

[10]  L. Martinu,et al.  Review Article: Stress in thin films and coatings: Current status, challenges, and prospects , 2018 .

[11]  Jonathan L. Priedeman,et al.  The role of crystallography and the mechanisms associated with migration of incoherent twin grain boundaries , 2017 .

[12]  E. Holm,et al.  Anti-thermal mobility in the Σ3 [111] 60° {11 8 5} grain boundary in nickel: Mechanism and computational considerations , 2017 .

[13]  Andrea M. Hodge,et al.  The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness , 2016 .

[14]  S. Foiles,et al.  Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion , 2016, Journal of Materials Science.

[15]  Arash Dehghan Banadaki,et al.  A simple faceting model for the interfacial and cleavage energies of Σ3 grain boundaries in the complete boundary plane orientation space , 2016 .

[16]  K. Barmak,et al.  Grain size dependence of the twin length fraction in nanocrystalline Cu thin films via transmission electron microscopy based orientation mapping , 2015 .

[17]  S. Foiles,et al.  Energy conserving orientational force for determining grain boundary mobility , 2015 .

[18]  Dierk Raabe,et al.  Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments , 2014 .

[19]  B. Boyce,et al.  The role of copper twin boundaries in cryogenic indentation-induced grain growth , 2014 .

[20]  B. Boyce,et al.  Cryogenic indentation-induced grain growth in nanotwinned copper , 2013 .

[21]  A. Rollett,et al.  Grain Boundary Character Distribution of Nanocrystalline Cu Thin Films Using Stereological Analysis of Transmission Electron Microscope Orientation Maps , 2013, Microscopy and Microanalysis.

[22]  N. Li,et al.  Structure and stability of Σ3 grain boundaries in face centered cubic metals , 2013 .

[23]  Xiaolei Wu,et al.  Grain size effect on deformation twinning and detwinning , 2013, Journal of Materials Science.

[24]  S. Ringer,et al.  Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals , 2011 .

[25]  K. Lu,et al.  Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation , 2011 .

[26]  Q. Jiang,et al.  The origin of the ultrahigh strength and good ductility in nanotwinned copper , 2010 .

[27]  J. Hirth,et al.  Detwinning mechanisms for growth twins in face-centered cubic metals , 2010 .

[28]  Shuaiqin Wu,et al.  Origin of deformation twinning from grain boundary in copper , 2008 .

[29]  D. McDowell,et al.  Asymmetric tilt grain boundary structure and energy in copper and aluminium , 2007 .

[30]  D. McDowell,et al.  Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium , 2007 .

[31]  David L. McDowell,et al.  Structural unit and faceting description of Σ3 asymmetric tilt grain boundaries , 2007 .

[32]  S. Suresh,et al.  Strength, strain-rate sensitivity and ductility of copper with nanoscale twins , 2006 .

[33]  Steven J. Plimpton,et al.  Computing the mobility of grain boundaries , 2006, Nature materials.

[34]  J. Weertman,et al.  Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures , 2005 .

[35]  M. Nastasi,et al.  Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning , 2004 .

[36]  I. Tabaković,et al.  Structure and Room-Temperature Recrystallization of Electrodeposited Copper , 2003 .

[37]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[38]  A. Bostel,et al.  Trajectory overlaps and local magnification in three-dimensional atom probe , 2000 .

[39]  Lucille A. Giannuzzi,et al.  A review of focused ion beam milling techniques for TEM specimen preparation , 1999 .

[40]  D. Blavette,et al.  Trajectories of field emitted ions in 3D atom-probe , 1999 .

[41]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[42]  M. Finnis,et al.  The influence of grain boundary inclination on the structure and energy of Σ=3 grain boundaries in copper , 1992 .

[43]  R. W. Balluffi,et al.  Observations of roughening/de-faceting phase transitions in grain boundaries , 1989 .

[44]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[45]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[46]  John W. Cahn,et al.  The Impurity‐Drag Effect in Grain Boundary Motion , 1962 .

[47]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[48]  David L. Olmsted,et al.  Trends in Grain Boundary Mobility: Survey of Motion Mechanisms , 2014 .

[49]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[50]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[51]  H. Windischmann Intrinsic Stress in Sputter Deposited Thin Films , 1992, Optical Interference Coatings.