DECOMPOSITION OF SEPARABLE CONCAVE

This paper presents a decomposition scheme for a large class of greyscale structuring elements from mathematical morphology. In contrast with many existing decomposition schemes, our method is valid in the continuous domain. Conditions are given under which this continuous method can be properly discretized. The class of functions that can be decomposed with our method contains the class of quadratic functions, that are of major importance in, for instance, distance transforms and morphological scale space. In the continuous domain, the size of the structuring elements resulting from the decomposition, can be chosen arbitrarily small. For functions from the mentioned class, that can be separated along the standard image axes, a discrete decomposition in 3 × 3 elements can be guaranteed.

[1]  L. Vincent Morphological Algorithms , 2018, Mathematical Morphology in Image Processing.

[2]  Arnold W. M. Smeulders,et al.  Decomposition of Separable Concave Structuring Functions , 2004, Journal of Mathematical Imaging and Vision.

[3]  Peter Sussner,et al.  Decomposition of Gray-Scale Morphological Templates Using the Rank Method , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Leo Dorst,et al.  Quadratic Structuring Functions in Mathematical Morphology , 1996, ISMM.

[5]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Arnold W. M. Smeulders,et al.  The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Leo Dorst,et al.  Morphological signal processing and the slope transform , 1994, Signal Process..

[8]  R. van den Boomgaard,et al.  Logarithmic Shape Decomposition , 1994 .

[9]  H. Heijmans Morphological image operators , 1994 .

[10]  Edward R. Dougherty,et al.  Gray-scale granulometries compatible with spatial scalings , 1993, Signal Process..

[11]  Paul D. Gader,et al.  Separable decompositions and approximations of greyscale morphological templates , 1991, CVGIP Image Underst..

[12]  Jianning Xu Decomposition of Convex Polygonal Morphological Structuring Elements into Neighborhood Subsets , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Gerhard X. Ritter,et al.  Decomposition of separable and symmetric convex templates , 1990, Optics & Photonics.

[14]  Paul D. Gader,et al.  Decomposition techniques for gray-scale morphological templates , 1990, Optics & Photonics.

[15]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[16]  G. Matheron Random Sets and Integral Geometry , 1976 .