Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land

[1]  R. Mitchell,et al.  Characterisation of episodic aerosol types over the Australian continent , 2008 .

[2]  Stephen G. Warren,et al.  Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and Fog from Surface Observations over Land and Ocean , 2014 .

[3]  Bryan A. Franz,et al.  Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[5]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[6]  T. M. Chin,et al.  A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies , 2016 .

[7]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[8]  Edith Rodriguez,et al.  Collocation mismatch uncertainties in satellite aerosol retrieval validation , 2017 .

[9]  Steven Platnick,et al.  Exploring the differences in cloud properties observed by the Terra and Aqua MODIS Sensors , 2009 .

[10]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  Alexander Smirnov,et al.  High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions , 2003 .

[12]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[13]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[14]  Larry Di Girolamo,et al.  A decade of change in aerosol properties over the Indian subcontinent , 2011 .

[15]  Jeffrey S. Reid,et al.  A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products , 2010 .

[16]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[17]  R. Gautam,et al.  Characterization of Aerosols over the Indochina Peninsula from Satellite-Surface Observations During Biomass Burning Pre-Monsoon Season , 2013 .

[18]  Glenn E. Shaw,et al.  Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site , 2009 .

[19]  N. C. Hsu,et al.  Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S‐NPP VIIRS as Part of the “Deep Blue” Aerosol Project , 2018, Journal of geophysical research. Atmospheres : JGR.

[20]  P. Parekh,et al.  The use of chemical and statistical methods to identify sources of selected elements in ambient air aerosols in Karachi, Pakistan , 1967 .

[21]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[22]  B. Franz,et al.  Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. , 2007, Applied optics.

[23]  G. McFarquhar,et al.  Thin and Subvisual Tropopause Tropical Cirrus: Observations and Radiative Impacts , 2000 .

[24]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[25]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[26]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[27]  Xi Shao,et al.  Suomi NPP VIIRS sensor data record verification, validation, and long‐term performance monitoring , 2013 .

[28]  T. Eck,et al.  AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth , 2014 .

[29]  Yujie Wang,et al.  Exploring systematic offsets between aerosol products from the two MODIS sensors. , 2018, Atmospheric measurement techniques.

[30]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[31]  Yong Xue,et al.  Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017) , 2018, Atmospheric Chemistry and Physics.

[32]  Dean B. Gesch,et al.  New land surface digital elevation model covers the Earth , 1999 .

[33]  Soo Chin Liew,et al.  Tropical cirrus cloud contamination in sun photometer data , 2011 .

[34]  Modern dust aerosol availability in northwestern China , 2017, Scientific Reports.

[35]  N. C. Hsu,et al.  Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation , 2015 .

[36]  Variations in parameters of aerosol optical thickness in Dushanbe , 2014, Izvestiya, Atmospheric and Oceanic Physics.

[37]  W. Paul Menzel,et al.  Improvements to Terra MODIS L1B, L2, and L3 science products through using crosstalk corrected L1B radiances , 2017, Optical Engineering + Applications.

[38]  Long term measurements of aerosol optical properties at a primary forest site in Amazonia , 2012 .

[39]  B. S. Negi,et al.  Aerosol composition and sources in Urban areas in India , 1967 .

[40]  N. C. Hsu,et al.  Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements , 2017, Journal of geophysical research. Atmospheres : JGR.

[41]  Gerhard Meister,et al.  Moderate-resolution imaging spectroradiometer ocean color polarization correction. , 2005, Applied optics.

[42]  A. Stohl,et al.  Around the world in 17 days - hemispheric-scale transport of forest fire smoke from Russia in May 2003 , 2004 .

[43]  B. Holben,et al.  Remote sensing of aerosol optical characteristics in sub-Sahel, , 2001 .

[44]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[45]  D. Jacob,et al.  Inventory of boreal fire emissions for North America in 2004 : Importance of peat burning and pyroconvective injection , 2007 .

[46]  Soo Chin Liew,et al.  Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program , 2013 .

[47]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[48]  Xiaoxiong Xiong,et al.  Status of Aqua MODIS spatial characterization and performance , 2006, SPIE Remote Sensing.

[49]  N. C. Hsu,et al.  Cross-calibration of S-NPP VIIRS moderate resolution reflective solar bands against MODIS Aqua over dark water scenes. , 2017, Atmospheric measurement techniques.

[50]  Brent N. Holben,et al.  Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS , 2012 .

[51]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[52]  M. Brauer,et al.  Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. , 2016, Environmental science & technology.

[53]  David G. Streets,et al.  Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model , 2014 .

[54]  Soo Chin Liew,et al.  First measurements of aerosol optical depth and Angstrom exponent number from AERONET's Kuching site , 2013 .

[55]  K. Lau,et al.  Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season , 2011 .

[56]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[57]  E. Fetzer,et al.  Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought , 2016, Proceedings of the National Academy of Sciences.

[58]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[59]  Characterization of PM2.5 Aerosols Dominated by Local Pollution and Asian Dust Observed at an Urban Site in Korea during Aerosol Characterization Experiments (ACE)–Asia Project , 2007, Journal of the Air & Waste Management Association.

[60]  S. Barrett,et al.  Contrasting the direct radiative effect and direct radiative forcing of aerosols , 2014 .

[61]  Amit Angal,et al.  Terra and Aqua moderate-resolution imaging spectroradiometer collection 6 level 1B algorithm , 2013 .

[62]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[63]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[64]  Robert E. Wolfe,et al.  Suomi NPP VIIRS prelaunch and on‐orbit geometric calibration and characterization , 2013 .

[65]  Heikki Järvinen,et al.  Spatial distributions and seasonal cycles of aerosols in India and China seen in global climate-aerosol model , 2011 .

[66]  Changyong Cao,et al.  Assessment of VIIRS radiometric performance using vicarious calibration sites , 2014, Optics & Photonics - Optical Engineering + Applications.

[67]  B. Sapkota,et al.  Black carbon aerosols variation in Kathmandu valley, Nepal , 2012 .

[68]  Chun Zhao,et al.  An observationally constrained estimate of global dust aerosol optical depth , 2016 .

[69]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[70]  S. Piketh,et al.  A seasonal trend of single scattering albedo in southern African biomass‐burning particles: Implications for satellite products and estimates of emissions for the world's largest biomass‐burning source , 2013 .

[71]  B. Holben,et al.  Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE‐ASIA campaign , 2011 .

[72]  Xiaoxiong Xiong,et al.  MODIS Reflective Solar Bands On-Orbit Lunar Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[73]  Brent N. Holben,et al.  Retrieving near‐global aerosol loading over land and ocean from AVHRR , 2017 .

[74]  Zhipeng Wang,et al.  Assessment of S-NPP VIIRS On-Orbit Radiometric Calibration and Performance , 2016, Remote. Sens..

[75]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Y. Kaufman,et al.  The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest , 2006 .

[77]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .

[78]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[79]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[80]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[81]  G. Meister,et al.  Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency , 2015 .

[82]  Paola Formenti,et al.  AMMA dust experiment: An overview of measurements performed during the dry season special observation period (SOP0) at the Banizoumbou (Niger) supersite , 2008 .

[83]  Bryan A. Franz,et al.  Adjustments to the MODIS Terra radiometric calibration and polarization sensitivity in the 2010 reprocessing , 2011, Optical Engineering + Applications.

[84]  Joseph M. Prospero,et al.  Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality , 2014 .

[85]  G. Roberts,et al.  Annual and diurnal african biomass burning temporal dynamics , 2008 .

[86]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[87]  Yujie Wang,et al.  Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements , 2014 .

[88]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[89]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[90]  N. Chubarova,et al.  Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002, and 2010 in the region of Moscow , 2011 .

[91]  Xiaoxiong Xiong,et al.  Cross calibration of SeaWiFS and MODIS using on-orbit observations of the Moon. , 2011, Applied optics.

[92]  Yong Xue,et al.  Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) , 2016, Remote. Sens..

[93]  Ana Maria Silva,et al.  Some considerations about Ångström exponent distributions , 2007 .