On constructions and parameters of symmetric configurations $$v_{k}$$vk
暂无分享,去创建一个
[1] Patric R. J. Östergård,et al. There exists no symmetric configuration with 33 points and line size 6 , 2007, Australas. J Comb..
[2] Camino Balbuena,et al. Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..
[3] IV JamesBarkerCoykendall,et al. Sets with few Intersection Numbers from Singer Subgroup Orbits , 2001, Eur. J. Comb..
[4] Nenad Miladinovic,et al. Generalized LDPC codes and generalized stopping sets , 2008, IEEE Transactions on Communications.
[5] Symmetric configurations for bipartite-graph codes , 2008 .
[6] A. Davydov,et al. Low density parity check codes on bipartite graphs with Reed-Solomon constituent codes 1 , 2009 .
[7] J. Hirschfeld. Projective Geometries Over Finite Fields , 1980 .
[8] Harald Gropp. Configurations and graphs - II , 1997, Discret. Math..
[9] L. D. Baumert,et al. On the existence of cyclic difference sets with small parameters , 2003, math/0304502.
[10] Camino Balbuena,et al. Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..
[11] Alexander Barg,et al. Distance properties of expander codes , 2004, IEEE Transactions on Information Theory.
[12] Patric R. J. Östergård,et al. There are exactly five biplanes with k=11 , 2006, Electron. Notes Discret. Math..
[13] András Gács,et al. On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..
[14] Konstantinos Drakakis,et al. A review of the available construction methods for Golomb rulers , 2009, Adv. Math. Commun..
[15] Patric R. J. Östergård,et al. There are exactly five biplanes with k = 11 , 2008 .
[16] Stefano Marcugini,et al. Some Combinatorial Aspects of Constructing Bipartite-Graph Codes , 2009, Graphs Comb..
[17] Marc J. Limpan. The existence of small tactical configurations , 1974 .
[18] Qiuju Diao,et al. Circulant decomposition: Cyclic, quasi-cyclic and LDPC codes , 2010, 2010 International Symposium On Information Theory & Its Applications.
[19] H. Gropp,et al. Non-symmetric configurations with deficiencies 1 and 2 , 1992 .
[20] Christopher N. Swanson. Planar cyclic difference packings. , 2000 .
[21] V. Martinetti. Sulle configurazioni piane μ3 , 1887 .
[22] Camino Balbuena,et al. Constructions of small regular bipartite graphs of girth 6 , 2011, Networks.
[23] Valentina Pepe,et al. LDPC codes from the Hermitian curve , 2007, Des. Codes Cryptogr..
[24] Hans Georg Carstens,et al. Reduction of Symmetric Configurations n3 , 2000, Discret. Appl. Math..
[25] Vito Napolitano,et al. Tactical (de-)compositions of symmetric configurations , 2009, Discret. Math..
[26] Zongwang Li,et al. Efficient encoding of quasi-cyclic low-density parity-check codes , 2006, IEEE Trans. Commun..
[27] Harald Gropp,et al. Nonsymmetric configurations with natural index , 1994, Discret. Math..
[28] Ronald D. Baker. An Elliptic Semiplane , 1978, J. Comb. Theory, Ser. A.
[29] Stefano Marcugini,et al. Tables of parameters of symmetric configurations $v_{k}$ , 2013, ArXiv.
[30] Vito Napolitano,et al. On the ubiquity and utility of cyclic schemes , 2011, Australas. J Comb..
[31] Qiuju Diao,et al. Cyclic and quasi-cyclic LDPC codes: New developments , 2011, 2011 Information Theory and Applications Workshop.
[32] Configurations, regular graphs and chemical compounds , 1992 .
[33] Patric R. J. Östergård,et al. Sets in Z nwith distinct sums of pairs , 2004, Discret. Appl. Math..
[34] Vito Napolitano,et al. Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .
[35] J. Singer. A theorem in finite projective geometry and some applications to number theory , 1938 .
[36] Harald Gropp. Configurations between geometry and combinatorics , 2004, Discret. Appl. Math..
[37] Alan C. H. Ling. Difference triangle sets from affine planes , 2002, IEEE Trans. Inf. Theory.
[38] N. J. A. Sloane,et al. On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.
[39] Josep Domingo-Ferrer,et al. User-private information retrieval based on a peer-to-peer community , 2009, Data Knowl. Eng..
[40] Marko Boben. Irreducible (v3) configurations and graphs , 2007, Discret. Math..
[41] Maria Bras-Amorós,et al. Optimal configurations for peer-to-peer user-private information retrieval , 2010, Comput. Math. Appl..
[42] Martin Funk. On Configurations of Type nk with Constant Degree of Irreducibility , 1994, J. Comb. Theory, Ser. A.
[43] Bahram Honary,et al. Generalized Construction of Quasi-Cyclic Regular LDPC Codes Based on Permutation Matrices , 2006, 2006 IEEE International Symposium on Information Theory.
[44] Vito Napolitano,et al. Configurations graphs of neighbourhood geometries , 2008, Contributions Discret. Math..
[45] Branko Grünbaum,et al. Configurations of Points and Lines , 2009 .
[46] Martin Funk. Cyclic Difference Sets of Positive Deficiency , 2008 .
[47] Judith Q. Longyear. Tactical Constructions , 1975, J. Comb. Theory, Ser. A.
[48] K. O'Bryant. A Complete Annotated Bibliography of Work Related to Sidon Sequences , 2004, math/0407117.
[49] Imre Z. Ruzsa,et al. Solving a linear equation in a set of integers I , 1993 .