Angular Correlation and the Far-Zone Behavior of Partially Coherent Fields*

In the first part of this paper, the concept of the angular correlation function of a stationary optical field is introduced. This function characterizes the correlation that exists between the complex amplitudes of any two plane waves in the angular spectrum description of the statistical ensemble that represents the field. Relations between this function and the more commonly known correlation functions are derived. In particular, it is shown that the angular correlation function is essentially the four-dimensional spatial Fourier transform of the cross-spectral density function of the source. The angular correlation function is shown to characterize completely the second-order coherence properties of the far field. An expression for the intensity distribution in the far zone of a field generated by a source of any state of coherence is deduced. Some generalizations of the far-zone form of the Van Cittert–Zernike theorem are also obtained.