Secretion by numbers: protein traffic in prokaryotes

Almost all aspects of protein traffic in bacteria were covered at the ASM‐FEMS meeting on the topic in Iraklio, Crete in May 2006. The studies presented ranged from mechanistic analysis of specific events leading proteins to their final destinations to the physiological roles of the targeted proteins. Among the highlights from the meeting that are reviewed here are the molecular dynamics of SecA protein, membrane protein insertion, type III secretion needles and chaperones, type IV secretion, the two partner and autosecretion systems, the ‘secretion competent state’, and the recently discovered type VI secretion system.

[1]  J. Tame,et al.  Crystal Structure of Hemoglobin Protease, a Heme Binding Autotransporter Protein from Pathogenic Escherichia coli* , 2005, Journal of Biological Chemistry.

[2]  John C. Wyngaard,et al.  Structure of the PBL , 1988 .

[3]  A. Engel,et al.  SecYEG assembles into a tetramer to form the active protein translocation channel , 2000, The EMBO journal.

[4]  N. Ruiz,et al.  Cytolysin-Mediated Translocation (CMT) A Functional Equivalent of Type III Secretion in Gram-Positive Bacteria , 2001, Cell.

[5]  J. Frank,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2006, Nature.

[6]  P. Sansonetti,et al.  Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri , 2005, Molecular microbiology.

[7]  J. Joly,et al.  Translocation can drive the unfolding of a preprotein domain. , 1993, The EMBO journal.

[8]  B. Cain,et al.  YidC is strictly required for membrane insertion of subunits a and c of the F(1)F(0)ATP synthase and SecE of the SecYEG translocase. , 2003, Biochemistry.

[9]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[10]  F. Cordes,et al.  Molecular model of a type III secretion system needle: Implications for host-cell sensing , 2006, Proceedings of the National Academy of Sciences.

[11]  A. Valencia,et al.  POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. , 2003, Trends in biochemical sciences.

[12]  Philip J. Reeves,et al.  Membrance traffic wardens and protein secretion in Gram-negative bacteria , 1993 .

[13]  M. van der Laan,et al.  YidC and SecY Mediate Membrane Insertion of a Type I Transmembrane Domain* , 2002, The Journal of Biological Chemistry.

[14]  Z. Ding,et al.  Activities of virE1 and the VirE1 Secretion Chaperone in Export of the Multifunctional VirE2 Effector via an Agrobacterium Type IV Secretion Pathway , 2001, Journal of bacteriology.

[15]  Piet Gros,et al.  Structure of the translocator domain of a bacterial autotransporter , 2004, The EMBO journal.

[16]  P. Emsley,et al.  Structure of Bordetella pertussis virulence factor P.69 pertactin , 1996, Nature.

[17]  G. Cornelis,et al.  The discovery of SycO highlights a new function for type III secretion effector chaperones , 2006, The EMBO journal.

[18]  G. Salmond,et al.  Membrane traffic wardens and protein secretion in gram-negative bacteria. , 1993, Trends in biochemical sciences.

[19]  J. Joly,et al.  The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. , 1993, The EMBO journal.

[20]  F. Duong,et al.  Investigating the SecY plug movement at the SecYEG translocation channel , 2005, The EMBO journal.

[21]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Marco Gartmann,et al.  Signal Recognition Particle Receptor Exposes the Ribosomal Translocon Binding Site , 2006, Science.

[23]  T. Rapoport,et al.  Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY , 2005, The Journal of cell biology.

[24]  Zhaohui Xu,et al.  The structural view of bacterial translocation‐specific chaperone SecB: implications for function , 2005, Molecular microbiology.

[25]  T. Rapoport,et al.  The Bacterial ATPase SecA Functions as a Monomer in Protein Translocation* , 2005, Journal of Biological Chemistry.

[26]  J. Kaper,et al.  SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD , 2004, Molecular microbiology.

[27]  E. Grohmann,et al.  Conjugative Plasmid Transfer in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[28]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[29]  L. Mashburn-Warren,et al.  Special delivery: vesicle trafficking in prokaryotes , 2006, Molecular microbiology.

[30]  C. Parsot,et al.  Chaperones of the type III secretion pathway: jacks of all trades , 2002, Molecular microbiology.

[31]  T. Rapoport,et al.  Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane , 2002, The EMBO journal.

[32]  S. Müller,et al.  The V-Antigen of Yersinia Forms a Distinct Structure at the Tip of Injectisome Needles , 2005, Science.

[33]  B. Finlay,et al.  CesT is a multi‐effector chaperone and recruitment factor required for the efficient type III secretion of both LEE‐ and non‐LEE‐encoded effectors of enteropathogenic Escherichia coli , 2005, Molecular microbiology.

[34]  F. Duong Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase , 2003, The EMBO journal.

[35]  S. Cole,et al.  Dissection of ESAT-6 System 1 of Mycobacterium tuberculosis and Impact on Immunogenicity and Virulence , 2006, Infection and Immunity.

[36]  M. Wolfgang,et al.  Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system , 2006, Molecular microbiology.

[37]  M. Bogdanov,et al.  Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition* , 2003, Journal of Biological Chemistry.

[38]  R. Ghirlando,et al.  Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter , 2005, Molecular microbiology.

[39]  Gabriel Waksman,et al.  Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. de Kruijff,et al.  Covalently Dimerized SecA Is Functional in Protein Translocation* , 2005, Journal of Biological Chemistry.

[41]  Samuel I. Miller,et al.  Type IV pili‐mediated secretion modulates Francisella virulence , 2006, Molecular microbiology.

[42]  M. Paetzel,et al.  Correction: Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor , 1998, Nature.

[43]  M. Goldberg,et al.  Periplasmic Transit and Disulfide Bond Formation of the Autotransported Shigella Protein IcsA , 2001, Journal of bacteriology.

[44]  T. Rapoport,et al.  Protein translocation by the Sec61/SecY channel. , 2005, Annual review of cell and developmental biology.

[45]  J. Velarde,et al.  Hydrophobic Residues of the Autotransporter EspP Linker Domain Are Important for Outer Membrane Translocation of Its Passenger* , 2004, Journal of Biological Chemistry.

[46]  R. Pfuetzner,et al.  Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion , 1999, Molecular microbiology.

[47]  Amit Singh,et al.  Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E. Cascales,et al.  Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Karamanou,et al.  Escherichia coli SecA truncated at its termini is functional and dimeric , 2005, FEBS letters.

[50]  J. Sacchettini,et al.  Crystal Structure of M. tuberculosis SecA, A Preprotein Translocating ATPase , 2003 .

[51]  M. Kuehn,et al.  Outer Membrane Vesicle Production by Escherichia coli Is Independent of Membrane Instability , 2006, Journal of bacteriology.

[52]  J. Deisenhofer,et al.  Nucleotide Control of Interdomain Interactions in the Conformational Reaction Cycle of SecA , 2002, Science.

[53]  Daniel Kahne,et al.  Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli , 2005, Cell.

[54]  A. Driessen,et al.  The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. , 2005, Journal of molecular biology.

[55]  J. Sexton,et al.  Legionella pneumophila DotU and IcmF Are Required for Stability of the Dot/Icm Complex , 2004, Infection and Immunity.

[56]  W. Picking,et al.  The Needle Component of the Type III Secreton of Shigella Regulates the Activity of the Secretion Apparatus* , 2005, Journal of Biological Chemistry.

[57]  L. Wyns,et al.  Structure of a membrane-based steric chaperone in complex with its lipase substrate , 2006, Nature Structural &Molecular Biology.

[58]  V. de Lorenzo,et al.  Probing secretion and translocation of a β‐autotransporter using a reporter single‐chain Fv as a cognate passenger domain , 1999, Molecular microbiology.

[59]  F. Cordes,et al.  Helical Structure of the Needle of the Type III Secretion System of Shigella flexneri * , 2003, The Journal of Biological Chemistry.

[60]  E. Cascales,et al.  Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion , 2004, Molecular microbiology.

[61]  Christoph Dehio,et al.  A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  C. Montecucco,et al.  Interaction with CagF Is Required for Translocation of CagA into the Host via the Helicobacter pylori Type IV Secretion System , 2006, Infection and Immunity.

[63]  I. Connerton,et al.  Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells , 1999, Molecular microbiology.

[64]  P. Sansonetti,et al.  A secreted anti‐activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri , 2005, Molecular microbiology.

[65]  J. Tommassen,et al.  Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly , 2003, Science.

[66]  Florence Tama,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2005, Nature.

[67]  Jeff F. Miller,et al.  Regulation of type III secretion in Bordetella , 2004, Molecular microbiology.

[68]  W. Keller,et al.  The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. , 2006, Microbiology.

[69]  M. W. Jackson,et al.  The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion , 2005, Molecular microbiology.

[70]  B. Clantin,et al.  Secretion signal of the filamentous haemagglutinin, a model two‐partner secretion substrate , 2006, Molecular microbiology.

[71]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[72]  Wolfgang Fischer,et al.  A C‐terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein , 2006, Molecular microbiology.

[73]  M. van der Laan,et al.  F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis , 2004, The Journal of cell biology.

[74]  J. Sacchettini,et al.  Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Hiroki Nagai,et al.  A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Tommassen,et al.  Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. , 1991, Journal of molecular biology.

[77]  H. Betz,et al.  The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. , 2004, Journal of molecular biology.

[78]  T. Silhavy,et al.  YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli , 2006, Molecular microbiology.

[79]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[80]  Torsten Schwede,et al.  The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. , 2006, Molecular biology of the cell.

[81]  A. Das,et al.  Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. Pugsley,et al.  Secretins take shape , 2006, Molecular microbiology.

[83]  A. Driessen SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. , 1993, Biochemistry.