SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA

We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1–S4) exhibited a slow rise (over ∼150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative to S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.

[1]  B. Weiner,et al.  SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA , 2015, 1512.09093.

[2]  M. Nonino,et al.  DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.

[3]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[4]  R. Massey,et al.  Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs , 2015, 1509.08914.

[5]  M. Lombardi,et al.  THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE , 2015, 1511.04093.

[6]  David O. Jones,et al.  TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING , 2015 .

[7]  J. Diego,et al.  “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.

[8]  J. Prochaska,et al.  A highly-ionized region surrounding SN Refsdal revealed by MUSE , 2015, 1509.07515.

[9]  Adam G. Riess,et al.  THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.

[10]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.

[11]  David O. Jones,et al.  ERRATUM: “TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING” (2015, AJ, 150, 156) , 2015, 1508.03100.

[12]  M. Meneghetti,et al.  ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744 , 2015, 1505.06211.

[13]  J. Diego,et al.  A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223 , 2015, 1504.05953.

[14]  L. Kewley,et al.  H II REGION METALLICITY CONSTRAINTS NEAR THE SITE OF THE STRONGLY LENSED SUPERNOVA “SN REFSDAL” AT REDSHIFT 1.49 , 2015, 1503.08822.

[15]  A. M. Swinbank,et al.  Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ∼100 pc scales at 1 < z < 4 , 2015, 1503.07873.

[16]  T. Treu,et al.  Gravitational Lensing: Einstein’s unfinished symphony , 2015 .

[17]  M. Oguri Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. , 2014, 1411.6443.

[18]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[19]  J. Diego,et al.  Free-form lensing implications for the collision of dark matter and gas in the frontier fields cluster MACS J0416.1−2403 , 2014, 1406.1217.

[20]  S. Rodney,et al.  PythonPhot: Simple DAOPHOT-type photometry in Python , 2015 .

[21]  K. Sharon,et al.  REVISED LENS MODEL FOR THE MULTIPLY IMAGED LENSED SUPERNOVA, “SN REFSDAL” IN MACS J1149+2223 , 2014, 1411.6933.

[22]  The Megamaser Cosmology Project. VI. Observations of NGC 6323 , 2014, 1411.5106.

[23]  Xiao-Li Meng,et al.  STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1 , 2014, 1409.1254.

[24]  N. Panagia,et al.  The extinction law inside the 30 Doradus nebula , 2014, 1408.4786.

[25]  S. More,et al.  Detection of the Gravitational Lens Magnifying a Type Ia Supernova , 2014, Science.

[26]  A. Fontana,et al.  THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745 , 2014, 1401.0532.

[27]  I. Hook,et al.  Lensed Type Ia supernovae as probes of cluster mass models , 2013, 1312.2576.

[28]  G. Meylan,et al.  COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.

[29]  David O. Jones,et al.  THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS , 2013, 1312.0943.

[30]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914 , 2013, 1304.4474.

[31]  S. More,et al.  EXTRAORDINARY MAGNIFICATION OF THE ORDINARY TYPE Ia SUPERNOVA PS1-10afx , 2013, 1302.2785.

[32]  N. Bastian,et al.  HIGH-RESOLUTION STUDY OF THE CLUSTER COMPLEXES IN A LENSED SPIRAL AT REDSHIFT 1.5: CONSTRAINTS ON THE BULGE FORMATION AND DISK EVOLUTION , 2013, 1302.2149.

[33]  S. Smartt,et al.  PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA , 2013, 1302.0009.

[34]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XI. Techniques for time delay measurement in presence of microlensing , 2012, 1208.5598.

[35]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[36]  J. Hjorth,et al.  The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters , 2012, 1210.7681.

[37]  A. M. Swinbank,et al.  Hubble Space Telescope Hα imaging of star-forming galaxies at z 1-1.5: evolution in the size and luminosity of giant H II regions , 2012 .

[38]  S. Dye,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.

[39]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[40]  S. E. Persson,et al.  The Type II supernovae 2006V and 2006au: two SN 1987A-like events , , 2011, 1111.2509.

[41]  M. L. Pumo,et al.  SN 2009E: a faint clone of SN 1987A , 2011, 1111.2497.

[42]  A. Goobar,et al.  Near-IR search for lensed supernovae behind galaxy clusters - III. Implications for cluster modeling and cosmology , 2011, 1109.6351.

[43]  J. Cuby,et al.  A HIGHLY MAGNIFIED SUPERNOVA AT z = 1.703 BEHIND THE MASSIVE GALAXY CLUSTER A1689 , 2011, 1109.4740.

[44]  E. Linder Lensing time delays and cosmological complementarity , 2011, 1109.2592.

[45]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[46]  L. Kewley,et al.  METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49 , 2011, 1103.3277.

[47]  R. Kirshner,et al.  Peculiar Type II Supernovae from Blue Supergiants , 2011, 1101.1298.

[48]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223 , 2010, 1009.1473.

[49]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.

[50]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[51]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[52]  E. Ofek,et al.  THE TYPE Ia SUPERNOVA RATE IN REDSHIFT 0.5–0.9 GALAXY CLUSTERS , 2010, 1006.3757.

[53]  S. Rodney,et al.  FUZZY SUPERNOVA TEMPLATES. II. PARAMETER ESTIMATION , 2010, 1003.5724.

[54]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[55]  A. M. Swinbank,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544 , 2009, 0911.2003.

[56]  S. Rodney,et al.  FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION , 2009, 0910.3702.

[57]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[58]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[59]  T. Broadhurst,et al.  DISCOVERY OF THE LARGEST KNOWN LENSED IMAGES FORMED BY A CRITICALLY CONVERGENT LENSING CLUSTER , 2009, 0906.5079.

[60]  Leonidas Moustakas,et al.  COSMOLOGICAL CONSTRAINTS FROM GRAVITATIONAL LENS TIME DELAYS , 2009, 0906.4108.

[61]  D. Coe,et al.  New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.

[62]  J.-P.Kneib,et al.  Near-IR search for lensed supernovae behind galaxy clusters - II. First detection and future prospects , 2008, 0810.4932.

[63]  J. Coles A New Estimate of the Hubble Time with Improved Modeling of Gravitational Lenses , 2008, 0802.3219.

[64]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[65]  M. Oguri Gravitational Lens Time Delays: A Statistical Assessment of Lens Model Dependences and Implications for the Global Hubble Constant , 2006, astro-ph/0609694.

[66]  G. Dobler,et al.  Microlensing of Lensed Supernovae , 2006, astro-ph/0608391.

[67]  L. Williams,et al.  The Hubble Time Inferred from 10 Time Delay Lenses , 2006, astro-ph/0607240.

[68]  Christopher S. Kochanek,et al.  Strong Gravitational Lensing , 2006 .

[69]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[70]  J. Sollerman,et al.  SN 1998A: explosion of a blue supergiant , 2005, astro-ph/0504114.

[71]  Astronomy,et al.  COSMOGRAIL: The COSmological MOnitoring of GRAvItational Lenses - I. How to sample the light curves of gravitationally lensed quasars to measure accurate time delays , 2005, astro-ph/0503019.

[72]  H. Dahle,et al.  Probing Galaxy Density Profiles with Future Supernova Surveys , 2004, astro-ph/0406343.

[73]  R. Bouwens,et al.  Strong-Lensing Analysis of A1689 from Deep Advanced Camera Images , 2004, astro-ph/0409132.

[74]  P. Schechter,et al.  Qualitative Aspects of Quasar Microlensing with Two Mass Components: Magnification Patterns and Probability Distributions , 2004, astro-ph/0403558.

[75]  E. Linder Strong gravitational lensing and dark energy complementarity , 2004, astro-ph/0401433.

[76]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[77]  A. Bolton,et al.  Prospects for the Determination of H0 through Observation of Multiply Imaged Supernovae in Galaxy Cluster Fields , 2002, astro-ph/0212181.

[78]  A. Goobar,et al.  Massive galaxy clusters as gravitational telescopes for distant supernovae , 2002, astro-ph/0211401.

[79]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[80]  J. Anthony Tyson,et al.  Large Synoptic Survey Telescope: Overview , 2002, SPIE Astronomical Telescopes + Instrumentation.

[81]  M. Oguri,et al.  Gravitational lens time delays for distant supernovae: breaking the degeneracy between radial mass profiles and the Hubble constant , 2002, astro-ph/0211499.

[82]  C. Fassnacht,et al.  A Determination of H0 with the CLASS Gravitational Lens B1608+656. III. A Significant Improvement in the Precision of the Time Delay Measurements , 2002, astro-ph/0208420.

[83]  P. Schechter,et al.  Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points , 2002, astro-ph/0204425.

[84]  D. Maoz,et al.  Supernovae in deep Hubble Space Telescope galaxy cluster fields: cluster rates and field counts , 2001, astro-ph/0109089.

[85]  S. E. Persson,et al.  The Distance to SN 1999em from the Expanding Photosphere Method , 2001, astro-ph/0105006.

[86]  D. Holz Seeing Double: Strong Gravitational Lensing of High-Redshift Supernovae , 2001, astro-ph/0104440.

[87]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[88]  E. Turner,et al.  Determining the microlens mass function from quasar microlensing statistics , 2000, astro-ph/0008008.

[89]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[90]  D. Blair,et al.  LIGHT CURVES OF SN 1998A AND COMPARISON WITH SIMILAR UNUSUAL SNE , 1998 .

[91]  Barend J. Thijsse,et al.  A partical algorithm for least-squares spline approximation of data containing noise , 1998 .

[92]  M. Bartelmann,et al.  Gravitational lensing of type Ia supernovae by galaxy clusters , 1997, astro-ph/9708120.

[93]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[94]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[95]  N. Walborn,et al.  Observations of Sk-69 deg 203 and the interstellar extinction towards SN 1987A , 1990 .

[96]  N. Suntzeff,et al.  SN 1987A in the LMC. III. UBVRI photometry at Cerro Tololo , 1990 .

[97]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[98]  John P. Huchra,et al.  2237 + 0305 - a new and unusual gravitational lens , 1985 .

[99]  Edward E. Leamer,et al.  Specification Searches: Ad Hoc Inference with Nonexperimental Data , 1980 .

[100]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[101]  I. Shapiro Fourth Test of General Relativity , 1964 .

[102]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .