We Need to Rethink How We Describe and Organize Spatial Information: Instrumenting and Observing the Community of Users to Improve Data Description and Discovery

In Spatial Data Infrastructure or Cyber Infrastructure, the description of geographic data semantics is intended to support data discovery, reuse and integration. In the vast majority of cases the producers of these data generate descriptions based on particular understandings of what uses the data are good for. This producer-oriented perspective means that the descriptions often do not help to answer the question of whether a data set is of use for a consumer who might want to apply it in a different context. In this paper, we discuss the role geographic information observatories can play in providing an infrastructure for observing the context of data use by consumers. These observations of data pragmatics lead to operational statistical methods that will support better fitness-for-use assessment. Finally, we highlight some of the challenges to building these observatories, and briefly discuss strategies to address those challenges.

[1]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[2]  Krzysztof Janowicz,et al.  Towards Geographic Information Observatories , 2014, GIO@GIScience.

[3]  Robert Jeansoulin,et al.  Towards spatial data quality information analysis tools for experts assessing the fitness for use of spatial data , 2007, Int. J. Geogr. Inf. Sci..

[4]  David De Roure,et al.  Zooniverse: observing the world's largest citizen science platform , 2014, WWW.

[5]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[6]  Filippo Menczer,et al.  Supporting a Social Media Observatory with Customizable Index Structures: Architecture and Performance , 2014, Cloud Computing for Data-Intensive Applications.

[7]  Saso Dzeroski,et al.  Inductive process modeling , 2008, Machine Learning.

[8]  Frederico T. Fonseca,et al.  Ontology-driven geographic information systems , 1999, GIS '99.

[9]  Mark Gahegan,et al.  Re-Envisioning Data Description Using Peirce's Pragmatics , 2014, GIScience.

[10]  James A. Hendler,et al.  Web Science: Understanding the Emergence of Macro-Level Features on the World Wide Web , 2013, Found. Trends Web Sci..

[11]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[12]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[13]  Wai Lam,et al.  LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE , 1994, Comput. Intell..

[14]  Balachander Krishnamurthy,et al.  Measuring personalization of web search , 2013, WWW.

[15]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[16]  David Ribes,et al.  Ethnography of scaling, or, how to a fit a national research infrastructure in the room , 2014, CSCW.

[17]  Mark Gahegan,et al.  A Situated Knowledge Representation of Geographical Information , 2006, Trans. GIS.

[18]  Michael I. Jordan Graphical Models , 2003 .

[19]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[20]  Mark Gahegan,et al.  Geographic Information Observatories for Supporting Science , 2014, GIO@GIScience.

[21]  Filippo Menczer,et al.  Design and prototyping of a social media observatory , 2013, WWW.

[22]  Carlos Granell,et al.  Integrating Semantic and Syntactic Descriptions to Chain Geographic Services , 2006, IEEE Internet Computing.

[23]  Krzysztof Janowicz,et al.  A Geo-semantics Flyby , 2013, Reasoning Web.

[24]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[25]  Steve Lawrence,et al.  Context in Web Search , 2000, IEEE Data Eng. Bull..

[26]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[27]  A. Whitehead Process and reality : an essay in cosmology , 1978 .

[28]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[29]  Werner Kuhn A Functional Ontology of Observation and Measurement , 2009, GeoS.

[30]  Wendy Hall,et al.  The Web Observatory: A Middle Layer for Broad Data , 2014, Big Data.

[31]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.