暂无分享,去创建一个
[1] John Wright,et al. A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[2] Ralph Otto Schmidt,et al. A signal subspace approach to multiple emitter location and spectral estimation , 1981 .
[3] Justin K. Romberg,et al. Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.
[4] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[5] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[6] Sumit Roy,et al. Joint DOA estimation and phase calibration of linear equispaced (LES) arrays , 1994, IEEE Trans. Signal Process..
[7] Zhihui Zhu,et al. Super-Resolution of Complex Exponentials From Modulations With Unknown Waveforms , 2016, IEEE Transactions on Information Theory.
[8] Yonina C. Eldar,et al. Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.
[9] Augustin Cosse,et al. From Blind deconvolution to Blind Super-Resolution through convex programming , 2017, ArXiv.
[10] Dehui Yang,et al. Super-Resolution of complex exponentials from modulations with known waveforms , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[11] John Wright,et al. Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.
[12] Justin Romberg,et al. Fast and Guaranteed Blind Multichannel Deconvolution Under a Bilinear System Model , 2016, IEEE Transactions on Information Theory.
[13] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[14] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[15] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[16] Yonina C. Eldar. Sampling Theory: Beyond Bandlimited Systems , 2015 .
[17] B. Friedlander,et al. Eigenstructure methods for direction finding with sensor gain and phase uncertainties , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[19] Thomas Kailath,et al. Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[20] Thomas Strohmer,et al. Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..
[21] Xiaodong Li,et al. Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.
[22] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[23] Yuanying Chen,et al. Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary , 2023, bioRxiv.
[24] Laurent Demanet,et al. Leveraging Diversity and Sparsity in Blind Deconvolution , 2016, IEEE Transactions on Information Theory.
[25] T.S. Perry. Thomas Kailath , 2007, IEEE Spectrum.
[26] Sumit Roy,et al. Self-calibration of linear equi-spaced (LES) arrays , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[27] Rémi Gribonval,et al. Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity , 2013, IEEE Transactions on Signal Processing.
[28] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[29] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[30] Roman Vershynin,et al. High-Dimensional Probability , 2018 .
[31] Randall J. LeVeque,et al. Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .
[32] Wenjing Liao,et al. Mismatch and resolution in compressive imaging , 2011, Optical Engineering + Applications.
[33] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[34] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[35] G. W. Stewart,et al. Computer Science and Scientific Computing , 1990 .
[36] M. H. Er,et al. Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array , 2006, IEEE Transactions on Signal Processing.
[37] Wenjing Liao,et al. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.
[38] Yanjun Li,et al. Optimal Sample Complexity for Blind Gain and Phase Calibration , 2015, IEEE Transactions on Signal Processing.
[39] A. Robert Calderbank,et al. Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..
[40] Yonina C. Eldar,et al. Non-Convex Phase Retrieval From STFT Measurements , 2016, IEEE Transactions on Information Theory.
[41] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[42] Thomas Strohmer,et al. Self-calibration and biconvex compressive sensing , 2015, ArXiv.
[43] Petre Stoica,et al. Introduction to spectral analysis , 1997 .
[44] Yanjun Li,et al. Blind Gain and Phase Calibration via Sparse Spectral Methods , 2017, IEEE Transactions on Information Theory.
[45] Zhaoran Wang,et al. A Nonconvex Optimization Framework for Low Rank Matrix Estimation , 2015, NIPS.
[46] Xiaodong Li,et al. Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.
[47] Wenjing Liao,et al. Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..
[48] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[49] Y. Bresler,et al. Blind gain and phase calibration for low-dimensional or sparse signal sensing via power iteration , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).
[50] B. Friedlander,et al. Eigenstructure methods for direction finding with sensor gain and phase uncertainties , 1990 .
[51] J. Koenderink. Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.
[52] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[53] Yuejie Chi,et al. Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization , 2015, IEEE Journal of Selected Topics in Signal Processing.
[54] Marco F. Duarte,et al. Spectral compressive sensing , 2013 .