Sensor Calibration for Off-the-Grid Spectral Estimation

This paper studies sensor calibration in spectral estimation where the true frequencies are located on a continuous domain. We consider a uniform array of sensors that collects measurements whose spectrum is composed of a finite number of frequencies, where each sensor has an unknown calibration parameter. Our goal is to recover the spectrum and the calibration parameters simultaneously from multiple snapshots of the measurements. In the noiseless case with an infinite number of snapshots, we prove uniqueness of this problem up to certain trivial, inevitable ambiguities based on an algebraic method, as long as there are more sensors than frequencies. We then analyze the sensitivity of this algebraic technique with respect to the number of snapshots and noise. We next propose an optimization approach that makes full use of the measurements by minimizing a non-convex objective which is non-negative and continuously differentiable over all calibration parameters and Toeplitz matrices. We prove that, in the case of infinite snapshots and noiseless measurements, the objective vanishes only at equivalent solutions to the true calibration parameters and the measurement covariance matrix. The objective is minimized using Wirtinger gradient descent which is proven to converge to a critical point. We show empirically that this critical point provides a good approximation of the true calibration parameters and the underlying frequencies.

[1]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[2]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[3]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[4]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[5]  Ren-Cang Li Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..

[6]  Sumit Roy,et al.  Joint DOA estimation and phase calibration of linear equispaced (LES) arrays , 1994, IEEE Trans. Signal Process..

[7]  Zhihui Zhu,et al.  Super-Resolution of Complex Exponentials From Modulations With Unknown Waveforms , 2016, IEEE Transactions on Information Theory.

[8]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[9]  Augustin Cosse,et al.  From Blind deconvolution to Blind Super-Resolution through convex programming , 2017, ArXiv.

[10]  Dehui Yang,et al.  Super-Resolution of complex exponentials from modulations with known waveforms , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[11]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[12]  Justin Romberg,et al.  Fast and Guaranteed Blind Multichannel Deconvolution Under a Bilinear System Model , 2016, IEEE Transactions on Information Theory.

[13]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[14]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[15]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[16]  Yonina C. Eldar Sampling Theory: Beyond Bandlimited Systems , 2015 .

[17]  B. Friedlander,et al.  Eigenstructure methods for direction finding with sensor gain and phase uncertainties , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[19]  Thomas Kailath,et al.  Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[20]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[21]  Xiaodong Li,et al.  Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.

[22]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[23]  Yuanying Chen,et al.  Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary , 2023, bioRxiv.

[24]  Laurent Demanet,et al.  Leveraging Diversity and Sparsity in Blind Deconvolution , 2016, IEEE Transactions on Information Theory.

[25]  T.S. Perry Thomas Kailath , 2007, IEEE Spectrum.

[26]  Sumit Roy,et al.  Self-calibration of linear equi-spaced (LES) arrays , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Rémi Gribonval,et al.  Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity , 2013, IEEE Transactions on Signal Processing.

[28]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[29]  Ren-Cang Li,et al.  Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..

[30]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[31]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[32]  Wenjing Liao,et al.  Mismatch and resolution in compressive imaging , 2011, Optical Engineering + Applications.

[33]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[34]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[35]  G. W. Stewart,et al.  Computer Science and Scientific Computing , 1990 .

[36]  M. H. Er,et al.  Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array , 2006, IEEE Transactions on Signal Processing.

[37]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[38]  Yanjun Li,et al.  Optimal Sample Complexity for Blind Gain and Phase Calibration , 2015, IEEE Transactions on Signal Processing.

[39]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[40]  Yonina C. Eldar,et al.  Non-Convex Phase Retrieval From STFT Measurements , 2016, IEEE Transactions on Information Theory.

[41]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[42]  Thomas Strohmer,et al.  Self-calibration and biconvex compressive sensing , 2015, ArXiv.

[43]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[44]  Yanjun Li,et al.  Blind Gain and Phase Calibration via Sparse Spectral Methods , 2017, IEEE Transactions on Information Theory.

[45]  Zhaoran Wang,et al.  A Nonconvex Optimization Framework for Low Rank Matrix Estimation , 2015, NIPS.

[46]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[47]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[48]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[49]  Y. Bresler,et al.  Blind gain and phase calibration for low-dimensional or sparse signal sensing via power iteration , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[50]  B. Friedlander,et al.  Eigenstructure methods for direction finding with sensor gain and phase uncertainties , 1990 .

[51]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[52]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[53]  Yuejie Chi,et al.  Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization , 2015, IEEE Journal of Selected Topics in Signal Processing.

[54]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .